广州市木材公司地块土壤污染 修复效果评估报告 (第一阶段)

(公示稿)

土地使用权人:广州市土地开发中心 代业主管理单位:广州环投控股有限公司 修复效果评估单位:广东中加检测技术股份有限公司

编制日期:二〇二四年十二月

目录

1 项目	背景	1
2 工作/	依据	5
2.1	法律法规、政策	5
2.2	标准规范、导则	6
2.3	项目文件	7
2.4	相关术语	8
3 地块	既况	9
3.1	场地概况	9
	3.1.1 基本概况	9
	3.1.2 环境特征	0
3.2	地块调查评价结论1	4
	3.2.1 土壤污染状况调查总体结论	4
	3.2.1.1 地块污染成因分析1	4
	3.2.1.2 土壤砷超筛选深度	4
	3.2.1.3 超筛面积、方量统计结果1	5
	3.2.1.4 土壤污染状况详细调查总体结论1	5
	3.2.2 风险评估结论	5
	3.2.2.1 场地风险评估结论1	5
	3.2.2.2 场地修复目标结论1	6
	3.2.2.3 场地修复范围及工程量结论1	7
	3.2.2.4 场地环境管理土范围与土方量结论1	7
3.3	场地修复方案1	8
	3.3.1 修复技术路线1	8
	3.3.2 修复技术路线1	8
	3.3.3 修复技术可行性分析1	8
3.4	修复实施情况2	0.
	3.4.1 修复施工总体部署2	0.
	3.4.2 施工准备阶段2	1
	3.4.2.1 建立组织架构2	:1

	3.4.2.3	人员设备进场	21
	3.4.2.4	场地平整及施工准备	. 23
	3.4.2.5	场地边界与污染区域拐点定位	. 24
	3.4.2.6	临时设施建设	. 24
	3.4.2.6	环境管理土堆场建设	. 24
	3.4.2.7	废水处理系统建设	. 24
	3.4.2.9	基坑止水、支护、降水	25
	3.4.3 污染	土壤清挖阶段	26
	3.4.3.1	开挖范围测量控制	26
	3.4.3.2	清挖原则	28
	3.4.3.3	第一阶段与第二阶段工作分界线	. 29
	3.4.3.4	第一阶段区域开挖顺序及各层实际开挖图	. 29
	3.4.3.6	各区污染土开挖方量汇总	. 41
	3.4.4 污染:	土壤预处理	. 43
	3.4.5 土壤	运输	. 44
	3.4.5.1	场内土壤运输	. 44
	3.4.5.2	污染土壤外运	. 45
	3.4.6 水泥	窑协同处置	. 46
	3.4.7 废水处	心理与去向	. 47
	3.4.7.1	废水处理工艺流程	. 47
	3.4.7.2	处理时间及处理量	. 47
	3.4.7.3	处理效果	. 49
	3.4.8 危险	废物清挖及转移	. 50
	3.4.9 堆体	信息	. 51
	3.4.10 工程	是量核算	. 52
	3.4.11 修复	实施时间节点	. 57
	3.4.12 《施	工总结报告》结论	. 58
3.5	环境保护措	肯施落实情况	. 58
	3.5.1 环境	保护措施落实范围及内容	. 58
	3.5.2 项目	实施期间的环境监理	. 59

	3.5.2.1 施工准备阶段环境监理	59
	3.5.2.2 施工阶段环境监理	59
	3.5.2.3 场内运输过程环境监理	61
	3.5.2.4 预处理过程环境监理	61
	3.5.2.5 外运处置环境监理	62
	3.5.2.6 危险废物开挖完成情况监理	63
	3.5.2.7 止水帷幕和基坑支护环境监理	64
	3.5.2.7 止水帷幕和基坑支护环境监理	64
	3.5.2.8 修复效果评估过程环境监理	65
	3.5.3 二次污染防治措施环境监理	65
	3.5.3.1 大气环境污染防范措施	65
	3.5.3.2 水环境污染防范措施	66
	3.5.3.3 噪声环境污染防范措施	67
	3.5.3.4 固体废弃物污染防范措施	68
3.6	地块环境监测情况	69
	3.6.1 大气监测	69
	3.6.1.1 无组织废气监测	69
	3.6.1.2 敏感点环境空气监测	71
	3.6.1.3 有组织废气监测	72
	3.6.3 废水监测	74
4 场地村	既念模型	76
4.1	资料回顾	76
	4.1.1 资料回顾清单	76
	4.1.2 资料回顾要点	76
	4.1.2.2 修复场地的目标污染物及修复目标审核结果	77
4.2	现场踏勘	83
4.3	人员访谈	84
4.4	地块概念模型	84
	4.4.1 地块概念模型涉及信息	84
	4.4.2 修复后场地概念模型	86

	4.4.2.1 污染源更新分析	86
	4.4.2.2 场地污染物暴露途径更新	93
	4.4.2.3 受体更新分析	93
	4.4.2.4 修复地块健康风险分析	94
5 效果证	平估布点方案	95
5.1	土壤修复效果评估布点	95
	5.1.1 效果评估范围	95
	5.1.2 采样节点	96
	5.1.3 布点数量与位置	97
	5.1.3.1 基坑底部和侧部采样布点	98
	5.1.3.2 疑似污染土采样布点	103
	5.1.4 检测指标	103
	5.1.4 评估标准值	103
6 现场5	· · · · · · · · · · · · · · · · · · ·	105
6.1	样品采集	105
	6.1.1 现场土壤采样	105
	6.1.2 样品保存与流转	105
	6.1.3 现场质量控制	106
6.2	实验室检测	107
	6.2.1 检测方法	107
	6.2.2 实验室质量控制	107
6.3	外部质量控制监督管理	108
	6.3.1 监督方式选择	109
	6.3.2 密码平行样质控监督	109
	6.3.3 平行样抽测质控监督	110
	6.3.4 质控监督结果	111
7效果证	平估	112
7.1	评估方法	112
7.2	检测结果分析	112
	7.2.1 基坑清挖检测结果	112

	7.2.1.1 第一层污染区基坑检测结果	. 112
	7.2.1.2 第二层污染区基坑检测结果	. 112
	7.2.1.3 第三层污染区基坑检测结果	. 112
	7.2.1.4 第四层污染区基坑检测结果	. 113
	7.2.1.5 第五层污染区基坑检测结果	. 113
	7.2.2 疑似污染土壤检测结果	. 113
7.3	效果评估结论	. 113
	7.3.1 基坑清挖效果评估结论	. 113
	7.3.2 疑似污染土效果评估结论	. 114
7.4	筛上物抽样估算效果评估结论	. 114
7.5	危险废物清挖效果评估结论	. 114
7.6	污染土异地处置效果评估结论	. 115
8 结论与	j 建议	. 119
8.1	修复工程概况	. 119
8.2	修复范围及工程量审核	. 120
8.3	阶段性施工总结报告结论	. 121
8.4	阶段性环境监理报告结论	. 122
8.5	阶段性效果评估结论	. 122
8.6	阶段性修复效果评估综合结论	. 123
8.7	后期环境监管建议	. 123

1项目背景

广州市木材公司地块位于广州市天河区黄埔大道东580号,地块中心经纬度为东经113°23′45.32″,北纬23°6′38.82″,地块占地面积为32173.18m²。地块北侧为黄埔大道东,东临广州环城高速,南面靠近珠江,西面紧邻广东海警局。

项目地块建厂前为农用地、水塘,1958年建厂成立广州市木材公司,主要从事原木贮存,没有加工工艺;1980年左右,厂内增设了锯木车间,存在锯木工序,该工序的作用主要是将大木材按客户需求锯成小木料,不存在其它加工工序;2000年,广州市木材公司改制停止经营,厂房出租给别克、雪佛兰等做4S店,主要从事汽车维修,东侧原装卸工作台和邻近黄埔大道的区域则出租作商铺。项目地块目前基本处于闲置状态,地块内的汽车4S店已全部搬迁,地块内无生产设备遗留。2021年1月,对地块内的地面建筑进行了拆除,现已全部拆除完毕。

根据广州市人民政府文件穗府函(2019)139号《金融城东区控制性详细规划通告附图》,项目地块利用规划文化设施用地(A2)和部分防护绿地(G2),属于第二类用地。

根据《土壤污染防治行动计划》(国发〔2016〕31号)、《关于保障工业企业场 地再发利用环境安全的通知》(环发〔2012〕140号)、《广州市人民政府关于印发广 州市申请使用建设用地规则的通知》(穗府〔2015〕15号)、《关于加强工业企业关停、 搬迁及原址场地再开发利用过程中污染防治工作的通知》(环发〔2014〕66号〕和 《广东省实施<中华人民共和国土壤污染防治法>办法》(2019年3月1日实施〕等相 关文件规定,工业用地原址在改变原土地使用性质,进行二次开发利用前必须进行 场地环境评价,对原址土壤和地下水进行污染监测分析和评价,并对发现存在污染 的场地制定土壤治理修复方案,开展修复工作,以保障人体健康、维护正常的生产 建设活动,防止场地性质变化带来新的环境问题。

受土地使用权人的委托,广东绿日环境科技有限公司承担该地块的土壤污染状况调查工作,开展项目地块土壤污染状况调查,确定场地污染的详细状况以及潜在的健康风险,为场地环境管理提供依据。

2021年8月25日,广州市环境技术中心主持召开了《广州市木材公司地块土壤污染初步调查报告》、《广州市木材公司地块土壤污染详细调查报告》和《广州市木材公司地块土壤污染风险评估报告》(以下简称《初调报告》、《详调报告》和《风评报告》)专家评审会。但由于特征污染物识别不清,土壤、地下水布点及采样深度等未能满足规范要求,现有数据不能支撑调查结论。专家组不同意《初步调查报告》和《详细调查报告》通过评审。

2021年11月11日,广州市环境技术中心重新主持召开了《初调报告》、《详调报告》和《风评报告》专家评审会,专家组原则同意通过评审,经修改完善并复核通过后方可作为下一步环境管理工作的依据。

依据《初调报告》、《详调报告》和《风评报告》的结果,广州市木材公司地块 关注污染物为土壤中为砷,基于第二类用地方式下,风险表征结果显示地块土壤砷 存在不可接受的致癌风险和非致癌危害,对使用人群存在健康隐患,地块内地下水 不开发饮用的情况下,地下水中砷的人体健康风险水平可以接受。

根据国务院四部委《关于保障工业企业场地再开发利用环境安全的通知》(环发(2012)140号)与环境保护部《关于加强工业企业关停、搬迁及原址场地再开发利用过程中污染防治工作的通知》(环发(2014)66号)的相关规定:被污染场地治理修复完成,经检测达到环保要求后,该场地方可投入使用;被污染场地未经治理修复的,禁止再次进行开发利用,禁止开工建设与治理修复无关的任何项目。因此,土地使用权人需对其污染地块进行修复。

根据土地使用权人的委托,场地土壤污染修复由广州市番禺环境工程有限公司(以下简称"修复单位")承担,场地土壤污染修复环境监理由广东省城规建设监理有限公司(以下简称"环境监理单位")承担。2024年6月24日,《广州市木材公司地块土壤污染修复方案》(以下称《修复方案》)、《广州市木材公司地块土壤污染修复环境监理方案》(以下称《监理方案》)通过了土地使用权人主持召开的专家评审会,专家组原则同意通过评审。《修复方案》、《监理方案》经过修改完善后,于2024年7月10日通过了专家组长复核,并于2024年7月24日通过了广州市环境技术中心组织的专家复核,方案经修改完善后广东省建设用地污染地块信息系统备案,可作为下一步环境修复的依据。

根据《修复方案》,修复项目主要规模为: 土壤砷的修复面积为 8283m², 需修复土方量为 23693m³, 最大修复深度 5.0m。其中经鉴别为危废土壤方量为 535m³, 开挖后交由危废处置单位进行处置。另在地块区北边 897m² 为电房及地铁保护区,涉及污染土方量为 2273m³, 采用东、南、西三侧的垂直水泥搅拌桩、水平加铺 HDPE 防渗膜+厚度 10cm 的 C25 混凝土面层)等原位工程管控措施。扣除渣块约 1578.8m³, 剩余 19306.2m³污染土采用水泥窑协同处置技术进行处置。

修复项目工作分两个阶段开展,具体修复工作内容包括:

- (1) 第一阶段工作内容
- 1) 危废土的开挖、委外处置、危废基坑第三方评估;
- 2)第一阶段污染土壤开挖、运输、暂存、外运输、水泥窑协同处置,修复范围包括R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3区域。
 - (2) 第二阶段工作内容
- 1) 第二阶段污染土壤开挖、运输、暂存、外运输、水泥窑协同处置,修复范围包括: R1-1、R1-2、R1-3、R2-1-2、R3-1-2、R4-1、R4-2、R5-1、R5-2;

2)第一阶段修复工程通过效果评估后,在采取风险管控措施后的地铁和电房保护区范围下游建设地下水监测井。

根据相关规定,污染场地修复工程完成后,需进行场地修复效果进行调查和效果评估,判断是否达到验收标准。在场地修复验收合格后,场地方才可进入再利用开发程序。

根据土地使用权人的委托,我司于 2024年9月至 2024年11月开展了广州市木材公司地块第一阶段土壤污染修复效果评估工作,内容包括污染场地基坑清挖效果评估、疑似污染土壤效果评估、冲洗后渣块(筛上物)效果评估、污染土壤异地处置效果评估,另外委托第三方检测单位广州竞轩环保科技有限公司进行危废清挖效果评估验收。

我司结合修复效果评估监测结果以及现场踏勘调研情况,并根据原环境保护部《污染地块风险管控与土壤修复效果评估技术导则(试行)》(HJ25.5-2018)的要求,同时审查了《广州市木材公司地块第一阶段土壤污染修复环境监理报告》(简称"《环境监理报告》")和《广州市木材公司地块第一阶段土壤污染修复施工总结报告》(简称"《施工总结报告》")等相关资料,编制完成《广州市木材公司地块第一阶段土壤污染修复效果评估报告》(简称"《阶段效果评估报告》"),报广州市生态环境局评审。

2工作依据

2.1 法律法规、政策

表 2.1-1 相关的法律法规、政策文件

序号	表 2.1-1 相关的法律法规、政策文件 名称	实施时间/文件号		
	法律法规			
1	《中华人民共和国环境保护法》	2015年1月1日		
2	《中华人民共和国水污染防治法》	2018年1月1日修订		
3	《中华人民共和国大气污染防治法》	2018年10月26日修订		
4	《中华人民共和国环境噪声污染防治法》	2018年12月29日修订		
5	《中华人民共和国固体废物污染环境防治法》	2020年4月29日修订		
6	《中华人民共和国土壤污染防治法》	2019年1月1日		
7	《国家危险废物名录》	2021年1月1日		
8	《危险废物转移联单管理办法》	1999年10月1日		
9	《建设项目环境保护管理条例》	1998年11月18日		
10	《建设工程安全生产管理条例》	2003年11月12日		
11	《危险化学品安全管理条例》	2011年2月16日		
12	《废弃危险化学品污染环境防治办法》	2005年10月1日		
	政策文件			
14 《关于保障工业企业场地再开发利用环境安全的通知》		环发〔2012〕140号		
15	《国务院办公厅关于印发近期土壤环境保护和综合治理工作安排的通知》	国办发〔2013〕7号		
16	《关于加强工业企业关停、搬迁及原址场地再开发利用过程中污染防治工作的通知》	环发〔2014〕66号		
17	《土壤污染防治行动计划》	国发〔2016〕31号		
18	《广东省土壤污染防治行动计划修复方案》	粤府〔2016〕145号		
19	《广州市土壤污染防治行动计划工作方案》	穗府〔2017〕13 号		
20	《污染地块土壤环境管理办法(试行)》	部令 第 42 号		
21	《关于印发广州市申请使用建设用地规则的通知》	穗府〔2015〕15号		
22	《广州市土壤环境保护和综合治理方案》	穗环〔2014〕128号		

序号	名称	实施时间/文件号
23	《广州市环境保护局关于进一步做好工业企业场地再开发利 用环保工作的通知》	穗环〔2015〕91号
24	《广州市环境保护局办公室关于加强污染场地治理修复工程 验收监测工作的通知》	穗环办〔2015〕193 号
25	《广州市环境保护局关于加强工业企业关停、搬迁及原址场 地再开发利用过程中环境监管工作的通知》	穗环〔2015〕215号
26	《关于印发广州市污染地块再开发利用环境管理修复方案(试行)的通知》	穗环〔2018〕26号
27	《广东省 2019 年土壤污染防治工作方案》	粤环发〔2019〕4号
28	《广州市土壤污染状况调查及修复效果评估监测质量监督工作指引》	穗环〔2023〕88号

2.2 标准规范、导则

表 2.2-1 相关的技术导则、标准及规范

序号	名称 名称	标准号/文号		
	国家标准、导则及规范			
1	《土壤环境质量 建设用地土壤污染风险管控标准(试行)》	GB36600-2018		
2	《地下水质量标准》	GB/T14848-2017		
3	《污水综合排放标准》	GB8978-1996		
4	《水污染排放限值》	DB44/26-2001		
5	《环境空气质量标准》	GB3095-2012		
6	《大气污染物综合排放标准》	GB16297-1996		
7	《大气污染物排放限值》	DB44/27-2001		
8	《恶臭污染物放标准》	GB14554-93		
9	《一般工业固体废物贮存、处置场污染控制标准》	GB18599-2001		
10	《危险废物贮存污染控制标准》	GB18597-2001		
	行业标准、导则及规范			
11	《建设用地土壤污染状况调查 技术导则》	НЈ25.1-2019		
12	《建设用地土壤污染风险管控和修复监测技术导则》	НЈ25.2-2019		
13	《建设用地土壤污染风险评估技术导则》	НЈ25.3-2019		
14	《建设用地土壤修复技术导则》	HJ25.4-2019		
15	《污染地块风险管控与土壤修复效果评估技术导则(试行)》	HJ25.5-2018		

序号	名称	标准号/文号
16	《污染地块地下水修复和风险管控技术导则》	НЈ25.6-2019
17	《污水监测技术规范》	НЈ 91.1-2019
18	《地下水环境监测技术规范》	НЈ 164-2020
19	《土壤环境监测技术规范》	НЈ/Т 166-2004
20	《环境空气质量手工监测技术规范》	HJ/T 194-2005
21	《建设用地土壤污染防治 第3部分:土壤重金属监测质量保证与质量控制技术规范》	DB 4401/T 102.3-2020
22	《全国土壤污染状况评价技术规定》	环发〔2008〕39号
23	《工业企业场地环境调查评估与修复工作指南(试行)》	环保部 2014.11
24	《关于印发建设用地土壤污染状况调查、风险评估、风险管控 及修复效果评估报告评审指南的通知》	环办土壤(2019)63 号
25	《广东省建设用地土壤污染状况调查、风险评估及效果评估报 告技术审查要点(修订版)》	2024-5392(生态)
26	《广州市工业企业场地环境调查、治理修复及效果评估技术要 点》	穗环办 (2018) 173 号
27	《广州市生态环境局关于印发广州市污染地块土壤异地处置异地修复评审指南等评审管理指南的通知》	穗环〔2021〕96号
28	《广州市生态环境局关于印发广州市污染土壤水泥窑协同处置环境管理要点的通知》	穗环〔2023〕91号
29	《建设用地土壤污染防治 第8部分:风险管控和修复效果评估技术规范》	DB4401/T 102.8-2024

2.3 项目文件

表 2.3-1 其他文件

序号	名称	时间
1	《广州市木材公司地块土壤污染状况初步调查报告》	2021年12月
2	《广州市木材公司地块土壤污染状况详细调查报告》	2021年12月
3	《广州市木材公司地块土壤污染状况风险评估报告》	2021年12月
4	《广州市木材公司地块土壤污染修复方案》	2024年7月
5	《广州市木材公司地块土壤污染修复环境监理方案》	2024年7月
6	《广州市木材公司地块土壤污染修复效果评估方案》	2024年7月
7	《广州市木材公司地块土壤污染修复施工总结报告(第一阶段)》	2024年11月
8	《广州市木材公司地块土壤污染修复环境监理报告(第一阶段)》	2024年11月
9	《广州市木材公司地块危险废物土壤清挖完成情况验收报告》	2024年11月

2.4 相关术语

- (1)**清洁土**:本项目中特指前期调查评估确认土壤中污染物含量不会对人体健康造成影响的土壤。
- (2) **疑似污染土**:本项目中在地块前期调查评估未确定有污染但存在污染可能性的土壤,如位于污染土层上、下 0 m~0.5 m 或 0 m~1 m,但未纳入效果评估监测的土壤等。
- (3)**环境管理土**:本项目中在地块前期调查评估确定超一类用地筛选值未超二 类用地筛选值的土壤。
- (4) **疑似环境管理土:** 本项目中既属于疑似污染土,又属于环境管理土的土壤, 经检测合格作为环境管理土处理,超过修复目标值则作为污染土处理。
 - (5) 危险废物:

本项目在前期危险废物鉴别过程中判定为具有危险特性的含砷污染土壤。

(6) **电房、地铁保护区**:本项目中在地块前期经相关部门审核同意划定的地铁 5号线东围站 A 出口以南 10.1m 区域(含电房 28m²)为电房、地铁保护区,同时作 为修复工程的管控区。

3 地块概况

3.1 场地概况

3.1.1 基本概况

3.1.1.1 地理位置

广州市木材公司地块位于广州市天河区黄埔大道东 580 号,地块中心经纬度为 东经 113°23′45.32″, 北纬 23°6′38.82″, 地块面积为 32173.18m², 地块北侧为黄埔大道东, 东临广州环城高速, 南面靠近珠江, 西面紧邻广东海警局。

3.1.1.2 场地周边敏感目标

地块周边 1km 范围内, 敏感目标主要为居民区和敏感水体,居民区包括车陂街道的沙美社区和西湖社区,前进街道的前进村和石溪村;敏感水体则有位于地块西侧 284m 的车陂涌和位于南侧 126m 的珠江。

序号	名称	类型	方位	相对距离/米
1	沙美社区	居民区	西北偏北	920m
2	西湖社区	居民区	西北偏北	450m
3	前进村	居民区	东北偏北	960m
4	石溪村	居民区	东	663m
5	车陂涌	水体	西	284m
6	珠江	水体	南	126m

表 3.1-1 场地周边敏感目标列表

3.1.1.3 场地未来用地规划

根据广州市人民政府文件穗府函(2019)139号《金融城东区控制性详细规划通告附图》,项目地块利用规划文化设施用地(A2)和部分防护绿地(G2),属于第二类用地

3.1.1.4 场地现状和用地历史

项目地块建厂前为农用地、水塘,1958年建厂成立广州市木材公司,主要从事

原木贮存,没有加工工艺;1980年左右,厂内增设了锯木车间,存在锯木工序,该工序的作用主要是将大木材按客户需求锯成小木料,不存在其它加工工序;2000年,广州市木材公司改制停止经营,厂房出租给别克、雪佛兰等做4S店,主要从事汽车维修,东侧原装卸工作台和邻近黄埔大道的区域则出租作商铺。

项目地块目前基本处于闲置状态,地块内的汽车4S店已全部搬迁,地块内无生产设备遗留,厂房闲置。地块东侧的商铺仍有部分在经营,主要销售建筑材料;地块南部为建筑材料的露天存放场,主要堆存有水泥、沙、砖等建材。2021年1月,对地块内的地面建筑进行了拆除,现已全部拆除完毕。

场地土地利用历史沿革情况见表3.1-2。

序号	时间	地块用途	地块使用权人
1	1958年以前	农用地	村集体
2	1958年~2000年	广州市木材公司,贮存原木	广州市广物木材有限公司
3	2000年~至 2019 年	别克、雪佛兰 4S 店,从事汽修	广州市广物木材有限公司
4	2019年至今	闲置,2021年1月地面建筑拆除	广州市广物木材有限公司

表3.1-2 场地土地利用历史沿革情况一览表

3.1.2 环境特征

3.1.2.1 区域地质

天河区内构造格局简单,主要断层为瘦狗岭断层,其分布于天河区中部,紧邻广深铁路,走向近东西向,与广深铁路基本一致,该断面向南倾,倾角较陡,一般50~85°,构造带以硅化岩、构造角砾岩、硅化破碎岩和糜棱岩为主,表现为兼具平移的正断层,其为控制性构造,在侏罗纪以前早已形成,直到第四系还有活动,不仅控制了区内元岗等岩体的侵入活动,还控制了广州轻微隆起区的形成和发展,并被多组北东,北西向次一级断层切错。该断层的活动表现在断裂两侧的地貌差异,北盘为隆起陵台地区,发育多级夷平面和阶地,南盘为海陆冲积平原,仅发育一级

河流阶地。天河区基岩分布受瘦狗岭断层控制,断层北缘隆起带基岩为燕山三期、四期花岗,局部为震旦系混合岩、片麻岩。出露的相应土层为花岗岩残积土(杂色砂质粘性土),如燕塘、天河客运站、植物园、龙洞、柯木朗、大观路北等地段;区内瘦狗岭断层以南为白垩系砾砂岩、粉砂岩、砾岩、泥岩,出露的相应土层为砾砂岩残积土(棕红色粉质粘土、碎石土,如员村、洗村、棠下村、华景新城、珠江新城、广州金融丑等地段。区内还零星分布有第四系冲洪积层(粉质粘土、砂土)及软土层(淤泥),第四系冲洪积层主要分布在古地貌如山前洼地、丘间谷地,如龙洞、沙河等地段。区内软土主要分布于珠海北岸,如珠海新城、广州金融城一带,但其厚度较薄。

3.1.2.2 区域水文地质

参考天河区内其它的地勘调查结果,在天然状态和天然条件下,地块所在区域 地下水埋藏水位介于 1.10-1.40m 之间。主要由上层湾水和潜水组成。上层滞水主要 储存于地下水潜水面以上的素填土上部地带,这一地带属于与饱水带有直接水力联 系的季节性含水层。潜水属场地下部地下水,主要储存于素填土下部、冲积砂层的 孔隙和基岩风化裂隙中。水位稳定性一方面受大气降水等地 表水体补给、掺入,另 一方面受上下部含水带的水力联系影响。水位埋深浅,高差小,说明土层间相互水 力联系较好,透水性较强,富术性较好。

根据 2009 年 8 月正式发布的《广东省地下水功能区划》(粤办函[2009]459 号) 文件,广州市木材公司地块所在区域浅层地下水划定为属"珠江三角洲广州芳村至 新塘地质灾害易发区(H074401002S01)",地下水类型主要为孔隙水和裂隙水,现 状水质类别为 I-III 类,地下水功能区保护目标为 III 类,维持较高水位,边界地下水 位始终不低于邻近咸水区地下水位,区域内局部地下水存在 Fe、pH 超标。

根据 2016 年中国地质科学院水文地质环境地质研究所编制完成的广州市浅层地

下水质量状况图,项目所在位置浅层地下水不宜作为饮用水源。

广州市地处南方丰水区,境内河流水系发达,大小河流(涌)众多,水域面积广阔,集雨面积在 100 平方公里以上的河流共有 22 条,老八区主要河涌有 231 条、总长 913 公里,不仅构成独特的岭南水乡文化特色,也对改善城市景观、维持城市生态环境的稳定起到突出的作用。

广州市水资源的主要特点是本地水资源较少,过境水资源相对丰富。全市水域面积 7.44 万公顷,占全市土地面积的 10%,主要河流有北江、东江北干流及增江、流溪河、白坭河、珠江广州河段、市桥水道、沙湾水道等,北江、东江流经广州市汇合珠江入海,本地平均水资源总量 79.79 亿立方米。以本地水资源量计,每平方公里有 106.01 万立方米,人均 1139 立方米,是全国人均水资源占有量的二分之一。过境客水资源量 1860.24 亿立方米,是本地水资源总量的 23 倍。客水资源主要集中在南部网河区和增城市,其中由西江、北江分流进入广州市区的客水资源量达 1591.5亿立方米,由东江分流进入东江北干流的客水资源量为 142.03 亿立方米,增江上游来水量 28.28 亿立方米。南部河网区处于潮汐影响区域,径流量大,潮流作用也很强。珠江的虎门、蕉门、洪奇沥三大口门在广州市南部入伶仃洋出南海,年涨潮量 2710亿立方米,年落潮量 4088 亿立方米,与三大口门的年径流量 1377 亿立方米比较,每年潮流可带来大量的水量,部分是可以被利用的淡水资源。

天河区地表水资源有沙河涌、猎德涌、员村涌、潭村涌、程界涌、棠下涌、车陂涌、深涌等8条主要河涌,总长69.43公里。另外还有近20条支涌、小涌,共长16公里。此外,天河区位于珠江北岸,有江岸线11公里;有耙齿沥水库、龙洞水库、新塘水库和麓湖、天河公园中心湖等,地块东边为深涌主涌,南边为珠江。

3.1.2.3 地块地质概况

根据地质勘察和钻孔分析,地块地层结构扣除地表建筑碎石块,自上而下依次

主要为杂填土、淤泥质土、粉质粘土。

- ①杂填土:杂色,由粉质黏土、中粗砂、砼块及少量砼块等堆填而成,稍湿,结构松散。层厚度 0.3~2.7m,平均厚度 1.5m;
- ②淤泥质土: 灰黑色,饱和,软塑,以粘粒为主,富含有机质及少量粉细砂,局部含砂粒。厚度 0.3~4.3m,平均厚度 3.5m;局部区域在该土层上方存在粉质粘土或砂质粘土;
- ③粉质粘土:红棕色,稍湿,可塑,主要由粘粒组成,土质不均,粘性一般,含少量粉粒。勘探深度 6m 范围内,揭露土层厚度 0.5~2.5m,平均厚度 1.1m。

3.1.2.4 地块水文地质概况

经调查显示,项目地块内地下水基本为上层滞水,埋深为 0.9m~3.08m,水位高程为 0.18m~1.36m。采样调查期间,项目地块地下水流向总体为东北流向西南,最终流向西南侧的珠江。

3.1.2.5 气象条件

天河区,位于北回归线以南,属南亚热带海洋性季风气候区,气候温暖湿润,雨量充沛。南亚热带季风气候显著,同时受低纬度海洋湿润气流的调节,日照充足,热量丰富,长夏无冬,雨量充沛,干湿季明显,暖湿气流盛行,气候高温多雨。受季风环流所控制,冬季处于极地大陆高压的东南缘,常吹偏北风,且恰在冷暖气团交替地带,气象要素变化大;夏季受副热带高压及南海低压槽的影响,常吹偏南风,因而摆脱了回归干燥带及信风带的影响,而表现出季风气候的特色。但热带气旋、暴雨、洪涝、干旱、寒潮和低温阴雨也常出现。

本地区年平均气温 21.8℃, 一月最低气温 0℃, 8月最高气温 38.7℃, 日照时间长, 年日照时数高达 1862 小时, 2~4月份日照时数较短, 7~10月份日照时数最多。同时, 本地区雨量充沛, 年降雨量大都在 1700毫米左右, 降雨量多集中在 4~9月,

占全年 81%左右,年均相对湿度为 77%。广州季风变化明显,全年风向多为北风,频率为 21.3%,多出现在 9月~翌年 3月,其次为东南风和东风,风频率为 13.9%,主要出现在 4~8月,常年平均风速 1.9m/s,静风频率为 33%,夏秋间常有台风侵扰,风速达 28m/s,绝对最大风速可达 33.7m/s。

3.2 地块调查评价结论

土壤污染状况调查单位于 2020 年 9 月至 2021 年 11 月间对场地开展了场地环境调查及风险评估工作,分为第一阶段场地环境调查、第二阶段场地环境调查和场地健康风险评估三个阶段实施,于 2021 年 12 月编制完成了《初步调查报告》、《详细调查报告》、《风险评估报告》,2021 年 12 月通过了广州市生态环境局的备案。

3.2.1 土壤污染状况调查总体结论

3.2.1.1 地块污染成因分析

在初步采样调查阶段,根据调查结果,超筛土壤点位位于历史水塘回填区,推断地块内的土壤砷污染来源可能跟历史水塘回填的回填土有关。在详细调查阶段,重点对历史水塘回填区进行了采样监测,根据详细采样调查结果,历史水塘回填区周边土壤确实存在土壤砷含量超风险筛选值。土壤污染状况调查阶段查明的土壤砷超筛选值点位与历史水塘回填区域高度重合。因此,可以明确地块内土壤砷的污染来源为历史水塘回填土。

对于地下水,MTW07的水土合并孔位 2SMT11的土壤砷含量亦超过风险筛选值, 土壤砷含量最大为 172mg/kg,点位污染深度为 2.5~3.7m,地下水埋深为 1.7m,土壤 污染深度在地下水稳定水位以下,可以明确地下水中砷含量超标与土壤砷含量超筛 选值相关。

3.2.1.2 土壤砷超筛选深度

根据初步采样调查和详细采样调查阶段的调查结果显示,项目地块内共 27 个土

壤砷超筛选值点位,超筛选值点位连片集中无孤立点位,土壤砷超筛选值样品的采集深度介于 0.3m~4.7m,查明的最大污染深度为 4.7m。

3.2.1.3 超筛面积、方量统计结果

根据确定的统计原则,本项目地块土壤砷超筛选值面积约 8283m², 砷超筛选值 土壤方量约为 23693m³。

3.2.1.4 土壤污染状况详细调查总体结论

- (1)本项目地块经过第一阶段和第二阶段土壤污染状况调查,结果表明项目地 块内土壤和地下水均存在砷超筛选值,确认项目地块为污染地块。
- (2)以未超筛选值点位连线、原历史水塘回填边界和地块红线确定污染范围,项目地块土壤砷污染范围约 8283m²,超筛选值深度为 0.3~4.7m,超筛选值土方量约 23693m³。
 - (3) 本项目地块存在土壤和地下水超筛选值,需要启动风险评估工作。

3.2.2 风险评估结论

3.2.2.1 场地风险评估结论

根据广州市人民政府文件穗府函(2019)139号《金融城东区控制性详细规划通告附图》,广州市木材公司地块利用规划文化设施用地(A2)和部分防护绿地(G2),属于第二类用地。基于第二类用地方式下,对项目地块的关注污染物砷进行风险评估,结果表明:

- (1)项目地块土壤砷存在不可接受的致癌风险和非致癌危害,对使用人群存在健康隐患;
- (2) 地下水不开发、不饮用的情况下,地下水中砷的人体健康风险水平可以接受。

人体健康的土壤砷风险控制值计算结果为 1.49, 具体见表 3.2-1。

表 3.2-1 土壤砷风险控制值计算结果 (mg/kg)

致癌风险控制值	非致癌风险控制值	风险控制值	
RCVSn	HCVSn	\(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\)	
1.49E+00	8.87E+01	1.49E+00	

3.2.2.2 场地修复目标结论

根据导则要求制定各关注污染物砷的修复目标值,并划定修复范围:

- (1)《建设用地土壤污染风险评估技术导则》(HJ 25.3-2019)的规定,修复目标值确定的依据为:分析比较按照 HJ25.3 计算的土壤风险控制值和地块所在区域土壤中目标污染物的背景含量和国家有关标准中规定的限值,合理提出土壤目标污染物的修复目标值。
- (2)《工业企业场地环境调查评估与修复工作指南(试行)》的规定:初步修复目标值,是根据场地可接受污染水平、场地背景值或本底值、经济技术条件和修复方式(修复和工程控制)、当地社会经济发展水平等因素综合确定的、场地土壤中的污染物修复后需要达到的限值。污染场地最终修复目标的确定,还应综合考虑修复后土壤的最终去向和使用方式、修复技术的选择、修复时间、修复成本以及法律法规、社会经济等因素。

根据导则要求和项目的实际情况,本项目土壤修复目标值的设置原则为:

- (1)原则上用风险控制值作为修复目标值,当风险控制值低于筛选值时,则采用筛选值作为修复目标值;修复目标值应低于国家风险管制值。
- (2)如当地背景值高于筛选值和风险控制值,则选取背景值作为修复目标值。 基于以上原则,本地块未来第二类用地场景下,土壤中砷的修复目标值为 60mg/kg。

表 3.2-2 土壤修复目标值

污染物	风险控制值	风险筛选值	风险管制值	修复目标值
-----	-------	-------	-------	-------

砷	1.49mg/kg	60mg/kg	140mg/kg	60mg/kg
---	-----------	---------	----------	---------

3.2.2.3 场地修复范围及工程量结论

根据地块第二类用地土壤污染风险评估结果及所确定的修复目标值,最终确定需要修复的土壤污染物为砷。

根据各超标点位污染深度的不同,第二类用地区域土壤修复范围共分五层,分别是第一层(0~1m)、第二层(1~2m)、第三层(2~3m)、第四层(3~4m)、第五层(4~5m)。总体修复范围约为 8283m²,合计修复土方量约为 23693m³。

1) 第一层(0-1.0m)修复范围及拐点

第一层修复范围划分为 4 个区域,修复面积共计约 2430m², 修复深度为 0-1m, 合计土方量约 2430m³。

2) 第二层(0.5-1.5m)修复范围及工程量

第二层修复范围划分为3 个区域,修复面积共计约7136m²,修复深度为1.0-2.0m,合计土方量约7136m³。

3) 第三层 (2.0-3.0m) 修复范围及工程量

第三层划修复范围划分为 1 个区域,修复面积共计约 6695m^2 ,修复深度为 2.0- 3.0m,合计土方量约 6695m^3 。

4) 第四层(2.5~3.5m)修复范围及工程量

第四层划分为 3 个区域,修复面积共计约 5254m^2 ,修复深度为 3.0-4.0m,合计 土方量约 5254m^3 。

5) 第五层(4.0~5.0m)修复范围及工程量

第四层划划分为 3 个区域,修复面积共计约 2179m²,修复深度为 4-5m,合计土方量约 2179m³。

3.2.2.4 场地环境管理土范围与土方量结论

本地块初步采样调查阶段,调查结果显示存在超一类用地风险筛选值但未超二类用地风险筛选值的环境管理土,具体超筛指标为铅、石油烃($C_{10}\sim C_{40}$)、乙苯、苯并[a] 花等 4 项,超筛范围为 9672 m^2 ,土方量为 13906 m^3 。

分层	环境管理指标	面积(m²)	方量 (m³)
第一层 (0-1m)	铅、乙苯、苯并[a]芘、 石油烃(C ₁₀ ~C ₄₀)	9248	9114
第二层 (1-2m)	铅、乙苯、苯并[a]芘、 石油烃(C ₁₀ ~C ₄₀)	6047	4792
第三层 (2-3m)	铅	88	88
第四层 (3-4m)	铅	1083	1083
第五层 (4-5m)	铅	1276	1276
	合计	9672	13906

表 3.2-10 环境管理土面积和方量统计表

3.3 场地修复方案

3.3.1 修复技术路线

修复工程由广州市番禺环境工程有限公司负责实施。场地修复单位于 2024 年 6 月制定了《广州市木材公司地块土壤污染修复方案》,2024 年 7 月 4 日通过了土地使 用权人组织的专家评审会,并于 2024 年 7 月 24 日通过了广州市环境技术中心组织 的专家复核,2024 年 8 月 2 日,完成在广东省建设用地污染地块信息系统备案。

3.3.2 修复技术路线

根据《修复方案》,场地修复工程规模为修复污染土壤约 23693m³, 其中经鉴别为危废的土方量为 535m³, 预计≥5cm 渣块量约为 1578.8m³, 最终需外运处置的污染土为 19306m³。对污染区 0~5m 污染土壤采用采取清挖后统一运至水泥窑接收厂家进行协同处置的方式进行修复。

3.3.3 修复技术可行性分析

本项目地铁和电房保护区内禁止施工,保护区的污染土无法扰动,采用管控的

模式降低该部分污染土的环境影响,本章节不再对保护区内污染土进行修复技术筛选,只对保护区外污染土进行修复技术筛选。

根据《污染场地修复技术目录(第一批)》(2014年),土壤常用修复技术包括 固化/稳定化技术、化学氧化/还原技术、土壤洗脱技术、水泥窑协同处置技术、土壤 植物修复技术、土壤阻隔填埋技术、生物堆技术等。

本项目外污染土采用异地处置的修复策略,本章节对水泥窑协同处置技术、土壤阻隔填埋技术在异地处置模式下的适用性进行筛选。

技术筛选的考量因素:基于本地块开发紧迫要求工期短、地块价值高、要求彻底消除污染、重金属污染难以消除的特点,综合考虑修复效果、修复时间、修复成本及其他相关因素。

本项目土壤污染物主要为重金属砷,不涉及 VOCs 和 SVOCs 等挥发性、半挥发性有机污染物。在异地处置修复策略下,适用于本项目的土壤修复技术有水泥窑协同处置技术、土壤阻隔填埋技术等。

本章节对水泥窑协同处置技术、土壤阻隔填埋技术在本项目的适用性进行筛选。修复技术筛选对比情况见表 3.3-1。

本项目污染区域均为重金属污染,为单一重金属污染。结合土壤修复技术的适用性、场地污染特征、污染物情况、最终修复目标值、场地水文地质条件、场地后期开发要求等,就国内污染土壤常用修复技术进行筛选。本项目重金属污染区分为五层,超修复目标值的污染物为砷。

 修复技术
 异位阻隔填埋技术
 水泥窑协同处置技术

 场地污染特征适用性
 适用
 适用

 场地水文地质条件适用性
 适用
 适用

 工期
 较长
 短

表 3.3-1 重金属污染土壤修复技术筛选表

修复技术	异位阻隔填埋技术	水泥窑协同处置技术
成本和运行费用	中到高	中
局限条件	广州市内或周边可选择的填 埋场地较少,每年可用于阻隔 填埋的污染土库容较少	需要进行土壤外运输
筛选结果	不适用	适用

因为本项目工期要求紧,为加快本项目污染土外运进行水泥窑协同处置的速度,也为了避免水泥窑停窑维修对本项目进度造成影响,修复单位拟选用的水泥窑协同处置单位为广东海螺鸿丰水泥有限公司、广东清远广英水泥有限公司、阳春海螺水泥有限责任公司。以上三家均属于安徽海螺集团有限责任公司,拟可接收污染土量分别为 13000t、7000t 以及 15000t,处置期分别为 19 天、37 天以及 30 天,可满足本项目 19306.2m³约 30890t 拟处置污染土量及工期要求。

综合考虑技术成熟性、处理效果、修复时间、修复成本、修复工程的环境影响等因素,并结合业主对场地开发和工期的实际要求,采用水泥窑协同处置修复技术 处理本地块污染土壤可行。

3.4 修复实施情况

3.4.1 修复施工总体部署

修复单位自 2024年3月15日进场,随即展开施工准备工作,2024年9月16开始污染土开挖,至 2024年10月30日完成第一阶段全部污染土壤清挖,污染土壤清挖工作历时45日完成。

广州市木材公司地块土壤污染修复项目(简称"项目"或"本项目")根据实施需要将实施过程划分为施工准备阶段、污染土壤清挖阶段、污染介质处理处置阶段和基坑回填阶段等四个阶段。

施工准备阶段分为建立组织架构、场地移交、人员材料设备进场、场地平整及 施工准备、场地边界与污染区域拐点定位、临时设施建设、基坑止水与支护等。该

项工作自 2024年3月15日开始实施,于 2024年10月20日完成。

污染土壤清挖阶段分为污染区放线测量、污染土壤开挖转运、污染土壤预处理 与暂存等,该项工作自 2024 年 9 月 16 日开始实施,于 2024 年 11 月 12 日完成。

污染介质处理处置包括污染土壤外运、筛上物冲洗、污废水处理等。该项工作自 2024 年 9 月 27 日开始实施,于 2024 年 11 月 12 日完成。

基坑回填阶段包括筛上物、清洁土、环境管理土的回填与压实,该项工作在第 一阶段修复效果评估完成、通过行政主管部门组织的专家评审会后开展。

3.4.2 施工准备阶段

3.4.2.1 建立组织架构

2024年3月15日修复单位进驻现场成立项目部,包括管理人员8名,施工人员54名3.4.2.2 场地移交

土地使用权人移交场地时,地块内没有满足施工所需的水电,修复单位从南方电网办理市政用电,从其它单位借用自来水。

项目正式实施前,施工单位委托有资质的测量公司进行场内 3 个基准点放设, 监理单位对基准点放设进行了全过程的旁站与核实。施工使用的测量设备根据 3 个 基准点进行了校准。基准点放设数据见表 3.4-2。

广州 2000 坐标系 国家大地 2000 坐标系 名称 X Y Н Y X H V01 227229.682 51595.927 2.812 2556973.254 438200.221 2.812 V02 227156.456 51491.705 7.422 2556900.522 438095.639 7.422 V03 227310.732 51437.721 2557055.072 438042.403

表 3.4-2 基准点

3.4.2.3 人员设备进场

2024年3月15日项目部设立,人、材、机开始陆续进场。现场投入的施工机械

设备包见表 3.4-3~表 3.4-4。

表 3.4-3 施工机械、设备表

设备名称	规格/型号	数量	单位	进场时间
厂内周转运输车	12m³	3	台	2024年9月14日
污染土外运运输车	静载重约 30t	25	台	2024年9月28日
挖掘机	Pc120	1	台	2024年10月25日
挖掘机	Pc300, 配套炮头	2	台	2024年9月10日
ALLU 斗专用挖掘机	Pc300	1	台	2024年9月10日
ALLU 筛分斗	DH3-23×75	1	台	2024年9月10日
多功能抑尘车	东风 4.5 方	1	台	2024年4月15日
铲车	1.5 方	1	台	2024年9月10日
轮胎起重机	20t	1	台	2024年8月24日
废水处理系统(调节池、一体化废水处理设备、清水池、加药系统等)	处理能力 5m³/h	1	套	2024年5月14日
潜水泵	$10\sim 100 m^3/h$	10	台	2024年3月28日
增压泵	4m ³ /h	2	台	2024年3月28日
喷雾炮机	40 米射	3	台	2024年3月28日
搅拌桩机	SP-5A18	1	台	2024年7月2日
灌注桩机	SWDM220	2	台	2024年8月15日

表 3.4-4 修复施工仪器表

名称	规格型号	数量	主要性能	进场时间
土壤采样器	套装	1	采不同土壤样品	2024年6月15日
手持土壤矿石分析仪	×L2 500	1	检测土壤、合金的重金属含 量	2024年6月15日
水准仪	HDS32C	1	标高控制	2024年6月15日
塔尺	/	1	标高控制	2024年6月15日
钢尺	/	1	量距	2024年6月15日
RTK 设备	HD202301	1	控制桩点的测量、校核; 工程控制定位	2024年6月15日
全站仪	南方	1	工程控制复核	2024年6月15日
在线扬尘监测第统	/	1	检测扬尘浓度	2024年8月2日

名称	规格型号	数量	主要性能	进场时间
自动水分分析仪	MS100	1	分析土壤水分	2024年8月2日
电子天平	LT 2002	1	称量	2024年8月2日
电子公斤称	ACS30A	1	称量	2024年8月2日

3.4.2.4 场地平整及施工准备

- (1) 定位污染区域拐点,确定污染区域边界;
- (2) 测量污染区域污染点位及拐点钻孔孔口标高:
- (3)把污染区域边界和污染区域污染点位及拐点钻孔孔口测量结果,交监理和 业主确认;
 - (4) 清理场地地表,把场地道路和堆场、洗石场、污水处理站的场地清理出来;
- (5)利用场地原有混凝土地面,按设计浇筑各堆场、洗石场等的混凝土底板建设雨水导排设施,在整体基坑的四周,建设砖砌雨水沟,防止雨水流入基坑。雨水沟导排的雨水引向修复区域外的集水坑,沉淀后利用水泵抽排至场内的雨水排水管道;
 - (6) 在大门内侧出入施工区的位置建设洗车区;
- (7) 在洗石区周边建设1个沉淀池;在洗车区与疑似污染土堆场周边建设1个沉淀池,洗车区与疑似污染土堆场共用该沉淀池;在污染土堆场2与环境管理土堆场周边建设1个集水池,污染土堆场2与环境管理土堆场共用该集水池;
- (8) 在堆场四周建设挡水墙/排水沟,内抹水泥砂浆,排水沟与沉淀池(或集水井)相连,在堆场的地势低位接管引排雨水;
- (9)) 施工单位从南方电网办理市政用电,用电负荷为 200kw。从其他单位借用自来水,租借的的自来水管有两条,其中一条管径 DN25 从地块南面驳接到场地,供项目部的生活用水施工用水;另外一条管径 DN40 从地块北面驳接到场地,供场边喷雾系统和施工用水;
 - (10))组织开挖、筛分机械以及场地清洁机(洒水车等)进场;

- (11) 建设场地周边的喷雾系统;
- (12) 在夜间车辆行驶路线沿途及污染土堆场架设线缆,安装照明灯;
- (13) 完善现场环境信息公开和标识牌;
- (14) 施工的资料编写。

3.4.2.5 场地边界与污染区域拐点定位

在第一阶段污染区域修复施工前,修复单位对污染区域拐点定位,定位复核结果均报环境监理进行审核。

3.4.2.6 临时设施建设

修复单位驻场后,根据方案平面布置要求,并按照场地实际情况进行临时设施 建设。

- (1) 洗车区、地磅建设
- 2024年5月25日至2024年6月1日完成洗车区、地磅的建设。
- (2) 污染土堆场建设
- 2024年5月1日至2024年5月8日完成污染土堆场1和污染土堆场2的建设。
 - (3) 疑似污染土堆场建设
 - 2024年5月16日至2024年5月23日完成疑似污染土堆场的建设。
 - (4) 洗石区建设
 - 2024年5月15日至2024年5月22日完成疑似污染土堆场的建设。
 - (5) 堆石区建设
 - 2024年5月31日至2024年6月7日完成堆石区的建设。

3.4.2.6 环境管理土堆场建设

2024年5月31日至2024年6月7日完成环境管理土的建设。

3.4.2.7 废水处理系统建设

2024年5月14日至2024年5月15日完成废水处理系统的安装。

3.4.2.9 基坑止水、支护、降水

(1) 基坑止水

根据《广州市木材公司地块土壤污染修复项目基坑支护工程》的设计图纸,本项目基坑止水帷幕的工程布置如下:

①在基坑的东侧,分别采用以下形式的搅拌桩作为止水帷幕: ϕ 600@450, 桩长 8m 的搅拌桩。

②在基坑的南侧、西侧,分别采用以下形式的搅拌桩作为止水帷幕: Φ 600@450, 桩长 8m 的搅拌桩; Φ 600@450, 桩长 8.5m 的搅拌桩; Φ 600@450, 桩长 8.5m 的搅拌桩; Φ 600@450, 桩长 9m 的搅拌桩; 双排高压旋喷桩 Φ 600@450 桩长 7m。③在基坑的北侧,分别采用以下形式的搅拌桩作为止水帷幕: Φ 600@450, 桩长 6m 的搅拌桩。

止水帷幕工艺流程见图 3.4-15, 现场施工见图 3.4-16, 平面布置图见图 3.4-17。

(2) 基坑支护

根据《广州市木材公司地块土壤污染修复项目基坑支护工程》的设计图纸,本项目基坑支护的工程布置如下:

①在基坑的东侧,分别采用以下措施作为基坑支护: 1:1.2 和 1:2.0 两级放坡; 1:1 一级放坡。

②在基坑的南、西侧,分别采用以下措施作为基坑支护: \$\phi 800@1100 桩长 10m 灌注桩+\$\phi 800@6600 桩长 8.7m 灌注桩+\$\phi 609 钢管 (t=16) @6600; \$\phi\$ 1000@1200 桩长 13m 灌注桩+\$\phi 1000 灌注桩@6000 桩长 11.5m 灌注桩+\$\phi 609 钢管 (t=16) @6600; \$\phi 800@1100 桩长 10.5m 灌注桩+\$\phi 800 灌注桩@6600 桩长 9m 灌注桩+\$\phi 609 钢管 (t=16) @6600; 1:1.2 和 1:2.0 两级放坡; 双排高压旋喷桩 \$\phi 600@450 桩长 7m,内插 \$\phi 48 钢管 (t=3.0) @450,长度 7m。

③在基坑的北侧,分别采用以下措施作为基坑支护: \$\phi 800@1100, 桩长 10m 灌注桩; \$\phi 800@1100, 桩长 10m 灌注桩+搅拌桩内插 \$\phi 48 钢管(t=3.0)@900, 长度 3m; \$\phi 800@1100, 桩长 8m 灌注桩+搅拌桩内插 \$\phi 48 钢管(t=3.0)@900, 长度 3m; 搅拌桩内插 \$\phi 48 钢管(t=3.0)@900, 长度 6m。

(3) 基坑止水

基坑开挖过程中,安装临时泵对开挖过程中的基坑渗水进行抽排,临时泵安装 在基坑最后开挖位置的低位,防止基坑积水,抽出的基坑积水抽排至废水处理系统 处理。

3.4.3 污染土壤清挖阶段

3.4.3.1 开挖范围测量控制

施工前组织熟练精干的测量队伍对业主提供的平面和高程控制点进行复测,并据此建立平面控制网和水准控制网,其精度必须满足测量规范和设计要求;对业主提供的控制点需加以保护,并用油漆加以清楚标注。

本工程施工测量要求的施测精度很高,必须精心施测并整理成果。测量成果必须满足工程测量规范和基坑工程有关规范要求,而且要快速准确,保证工程进度要求。

根据基准点和水准点,在施工场地内设立施工用的平面控制网和水准控制网,经复核无误后方可使用。施工期间应经常复测并注意保护。根据测量控制点,准确测放出各个土壤污染区域拐点,经工程监理复核后开始开挖,确保土壤污染区域定位准确。

(1) 测量准备工作

- 1)制定污染区域清挖施工测量放线测量方案,经监理方审批后开始施工放线;
- 2) 熟悉图纸、了解污染区域拐点放线的相关要求,校核图纸中相关数据,掌握测量放线所需要的几何尺寸及相关数据。

为能准确及时进行污染区域定位选用适合、高效的测量仪器。本工程测量仪器 配备见表 3.4-9。

序号	测量器具名称	数量	用途
1	RTK 设备	1台	坐标点测量/标高控制
2	水准仪	1台	标高控制
3	塔尺	1 把	标高控制
4	钢尺	1 把	量距
5	全站仪	1台	坐标点测量
6	对讲机	3 部	通讯联络
7	手提电脑	1 部	计算验算

表 3.4-9 主要测量用具

(2) 土方施工测量及过程监控

采用全站仪与水准仪实测现场地形,踩点间隔不大于 20m,测量场地高程,了解场地的标高状况,为清挖深度的控制和结算提供依据。

依据场区平面控制桩与污染区域分布图,利用全站仪将污染土壤清挖区域按污染类型、开挖范围不同分别测放出拐点坐标,用白灰撒出边界线。

在开挖线范围一侧设置警示牌,分别设置醒目的颜色进行区分,并在警示牌上标明土壤污染类型、处理方式等详细内容,避免错挖。在完成放线工作后报请业主和工程监理等相关单位到工地现场对放线成果进行核查,经各方核查批准后再进下一步的施工工作。施工记录与验线:

- (1) 对施测所需的各类数据及施测方法均做好详细记录,要求做到原始有效, 字迹工整,内容有可追溯性。
 - (2) 每次施测完毕后,首先由测量人员进行自检,确认后交监理核验。
- (3)测量验线人员按施工组织设计施工进度的安排,结合施工测量方案准确及时地做好各阶段的测量验收工作,紧密配合施工生产。

(4)验线工作与放线工作要做到人员、仪器和测量方法三分开,独立进行。验 线的精度要高于放线。严禁验线与放线同时进行,严禁不经过验线就擅自施工的现 象发生。

3.4.3.2 清挖原则

- (1) 各类土壤的清挖分类开挖,避免交叉污染。
- (2) 各类土壤场内运输过程中做好车辆清洁工作,避免出现道路遗撒、扬尘等,如运输过程中发现有遗撒的土壤,立即派遣工人对遗撒的土壤进行清扫收集,收集后的土壤对应归类至指定土壤的堆场。
 - (3) 污染土挖掘后及时装车运走,尽量减少因土壤扰动产生的环境影响。
- (4) 对污染土层上、下 0m~0.5m 的土壤,如未纳入效果评估监测,在修复开挖过程中作为疑似污染土,实施单独存放和检测,对超过修复目标值的土壤采取必要的风险管控或修复措施;侧壁经效果评估单位检测合格后,放坡土按清洁土处理,如未经检测,放坡土按污染土处理。本项目超过修复目标值的疑似污染土按污染土修复(本项目第一阶段的疑似污染土未有检测超标)。
- (5)对于超一类用地筛选值但未超二类用地筛选值的环境管理土壤运往环境管理 土堆场堆置,开挖和堆置均做好相应的记录,不与清洁土混合开挖和堆放,堆置后 覆盖防尘网,日后回填时参考阻隔填埋区域标示牌的样式做好明确标记并提出环境 管理措施建议。
- (6) 对于既属于疑似污染土,又属于超一类用地筛选值但未超二类用地筛选值的环境管理土壤,如未纳入效果评估监测,归类为疑似环境管理土,与疑似污染土,开挖和堆置均做好相应的记录,实施单独存放和检测,检测合格则作为环境管理土单独存放,防雨膜覆盖,回填时参考阻隔填埋区域标示牌的样式做好明确标记并提出环境管理措施建议;对超过修复目标值的疑似污染土按污染土修复。

(7) 开挖过程中在危险废物上、下方 0~0.5m 的土壤,如原本属于污染土的,按 污染土进行修复;

如原本不属于污染范围和环境管理范围的,如未纳入效果评估监测,按疑似污染土进行处理,归入疑似污染土存放和检测;

如原本不属于污染范围,但属于环境管理范围的,如未纳入效果评估监测,按 疑似环境管理土进行处理,实施单独存放和检测,检测合格则作为环境管理土,超 过修复目标值的疑似环境管理土按污染土修复。

清挖的基本施工程序为:准备工作→土壤范围边界定位(边界坐标放线)→测量验线→原地貌高程测量→土壤清挖并转运→开挖后高程与边界测量→基坑检测(如需)→基坑验收。

3.4.3.3 第一阶段与第二阶段工作分界线

本项目的污染土修复工作分两阶段进行,第一阶段修复工作和第二阶段修复工作的分界线见图 3.4-23, 分界线的定位坐标见表 3.4-10。

拐点编号 X G24 2557044.677 38438079.803 G23 2557030.941 38438071.817 G27 2557006.905 38438092.645 G53 2556990.108 38438113.581 G31 2557003.472 38438123.924 G52 2556926.361 38438092.42 G13 2556988.829 38438153.649 2556999.847 38438142.953 a2 2556996.899 38438166.065

表 3.4-10 第一阶段修复工作和第二阶段污染土修复工作分界线坐标表

3.4.3.4 第一阶段区域开挖顺序及各层实际开挖图

本项目第一阶段的污染区域污染土壤开挖顺序见表 3.4-11。

表 3.4-11 污染区域污染土壤开挖顺序表

顺序	第1步		第2步		第3步		第 4 步		第5步		第6步		第7步
所在 层	第一层		第一层		第二层		第三层		第三层		第三层		第四、 五层
土壤种类	污染土	\rightarrow	疑似污染 土、疑似 环境管理 土、环境 管理土	\rightarrow	污染 土	\rightarrow	疑似污 染土、 环境管 理土	\rightarrow	污染土	\rightarrow	疑似污染土	\rightarrow	污染土

3.4.3.5 污染土壤清挖

一、第一阶段第一层

(一)污染区清挖前后拐点坐标信息

第一层污染区拐点坐标及清挖前后信息见表 3.4-12, 疑似污染土、环境管理土 拐点清挖前后信息见表 3.4-13。

表 3.4-12 第一层污染区拐点坐标及清挖前后信息表

深度范 修复区域 围 编号 (m)		编号	方案拐点坐	标及高程(m)	方案清 挖面积 (m²)	方案 清挖 深度	清挖后拐点丛	살标及高程(m)	实际清 挖面积 (m2)	实际平 均清挖 深度 (m)	清挖范 围对比	备注
			X(纵坐标)	Y (横坐标)		ΔH	X(纵坐标)	Y (横坐标)		ΔH		
		G09	2557009.792	38438132.310			2557009.760	38438132.017				
		G10	2557019.634	38438137.097			2557019.634	38438137.097				
		G12	2557000.308	38438171.306			2557000.308	38438171.306				
R1-4	0-1.0m	G13	2556988.829	38438153.649	230	1	2556988.829	38438153.634	241	1.01	增大	
		a	2556996.777	38438166.363			2556996.899	38438166.065				
		b	2557010.484	38438132.647			2557010.570	38438132.434				
		2SMT22	2557004.479	38438146.509			2557004.479	38438146.509				污染点

表 3.4-13 第一层疑似污染土、环境管理土清挖前后拐点信息表

修复区域	深度 范围 (m)	编号	方案拐点坐	标及高程(m)	方案清 挖面积 (m ²)	方案 清挖 深度	清挖后拐点丛	公标及高程(m)	实际清 挖面积 (m²)	实际平 均清挖 深度 (m)	清挖 范围 对比	备注
			X(纵坐标)	Y (横坐标)		ΔH	X(纵坐标)	Y (横坐标)		ΔH		
		a01	2557014.302	38438086.410			2557014.419	38438086.171				
		KD04	2557011.873	38438122.019			2557011.962	38438122.185				
h:1 1 1	0.05	a02	2556999.160	38438120.710	150	0.50	2556999.121	38438120.802	470	0.51	増大	
hj1-1-1	0-0.5	G53	2556990.108	38438113.580	458	0.50	2556989.932	38438113.548	470	0.51	增入	
		G27	2557006.905	38438092.650			2557006.905	38438092.650				
		2SMT11	2557011.105	38438114.087			38438114.087	2557011.105				污染点

修复区域	深度 范围 (m)	编号	方案拐点坐	标及高程(m)	方案清 挖面积 (m²)	方案 清挖 深度	清挖后拐点丛	≦标及高程(m)	实际清 挖面积 (m²)	实际平 均清挖 深度 (m)	清挖 范围 对比	备注
			X(纵坐标)	Y(横坐标)		ΔH	X(纵坐标)	Y(横坐标)		ΔH		
		G24	2557044.677	38438079.800			2557044.720	38438079.701				
		e	2557039.228	38438092.270			2557039.228	38438092.270			増大	
		d	2557032.097	38438089.716			2557032.097	38438089.716			百八	
		c	2557023.989	38438108.086			2557023.989	38438108.086				
ys1-2-1	0.5-1.0	G26	2557023.566	38438108.350	573	0.50	2557023.497	38438108.422	582	0.50		
		b18	2557013.456	38438098.820			2557013.456	38438098.820				
		b17	2557014.302	38438086.410			2557014.219	38438086.295				
		G23	2557030.941	38438071.820			2557030.904	38438071.708				
		2SMT09	2557028.823	38438092.563			2557028.823	38438092.563				污染点
		b04	2557003.737	38438121.410			2557003.756	38438121.474				
h:1 2 1	0.5-1.0	G31	2557003.472	38438123.920	224	0.50	2557003.495	38438123.981	225	0.53	増大	
yhj1-2-1	0.3-1.0	G53	2556990.108	38438113.581	224	0.30	2556990.266	38438113.840	223	0.55	增入	
		G27	2557006.905	38438092.650			2557006.905	38438092.645				
		b18	2557013.456	38438098.820			2557013.456	38438098.820				
		KD04	2557011.873	38438122.020			2557011.957	38438122.106				
hj1-2-1	0.5-1.0	b04	2557003.737	38438121.410	198	0.50	2557003.756	38438121.474	200	0.60	增大	
		G27	2557006.905	38438092.650			2557006.905	38438092.645				
		2SMT11	2557011.105	38438114.087			2557011.105	38438114.087				污染点
		b17	2557014.302	38438086.410			2557014.219	38438086.295				
yhj1-2-2	0.5-1.0	b18	3557013.456	38438098.820	42	0.50	3557013.456	38438098.820	43	0.70	增大	
		G27	2557006.905	38438092.650			2557006.905	38438092.645				

(二) 开挖顺序

第一阶段第一层的开挖顺序: R1-4 污染土开挖→基坑检测→=清洁土开挖→疑 似污染土开挖→环境管理土开挖→疑似环境管理土开挖→第一阶段第一层开挖结束。

(三)清挖工程量

依据土壤污染区域的清挖基坑测量放线结果进行计算,清挖污染土方 243.4m³,清挖疑似污染土 291m³,清挖环境管理土 359.7m³,清挖疑似环境管理土 149.4m³。 根据实测情况,基坑开挖实际开挖量与方案污染开挖量对比情况见表 3.4-14。

方案清挖 实际平均 实际清挖 方案清挖 方案开 实际开 超挖 深度 清挖深度 区域名称 挖方量 挖方量 方量 面积 面积 (m) (m) (m^2) (m^2) (m^3) (m^3) (m^3) ΔН ΔH R1-4 230 1 241 1.01 230.0 243.4 13.4 0.50 291.0 ys1-2-1 573 582 0.50 286.5 4.5 hi1-1-1 458 0.50 470 0.51 229.0 239.7 10.7 21 hj1-2-1 198 0.50 200 0.60 99.0 120.0 yhj1-2-1 224 0.50 225 0.53 112.0 119.3 7.25 0.50 0.70 yhj1-2-2 42 43 21.0 30.1 9.1

表 3.4-14 第一层开挖范围与方案范围对比表

二、第二层各区清挖施工过程

(一)污染区清挖前后拐点坐标信息

第二层污染区清挖前后信息拐点坐标见表 3.4-15, 疑似污染土、环境管理土拐点清挖前后信息见表 3.4-16。

表 3.4-15 第二层污染区清挖前后拐点坐标信息表

修复区域	深度范 围 (m)	编号		标及高程(m)	方案清 挖面积 (m²)	方案 清挖 深度		於标及高程(m)	实际清 挖面积 (m²)	实际平 均清挖 深度 (m)	清挖 范围 对比	备注
			X(纵坐标)	Y(横坐标)		ΔH	X(纵坐标)	Y(横坐标)		ΔH		
		G09	2557009.792	38438132.308			2557009.740	38438132.025				
		G10	2557019.634	38438137.097			2557019.634	38438137.097				
		G12	2557000.308	38438171.306			2557000.308	38438171.306				
R2-2		G13	2556988.829	38438153.649	230	1	2556988.458	38438153.634	242	1.01	增大	
		a	2556996.899	38438166.065			2556996.779	38438166.360				
		b	2557010.484	38438132.647			2557010.554	38438132.467				
		2SMT22	2557004.479	38438146.509			2557004.479	38438146.509				污染点
		G27	2557006.905	38438092.650			2557006.896	38438092.646				
R2-1-1	1.0-2.0	G31	2557003.472	38438123.924	227	1	2557003.657	38438124.316	236	1.02	增大	
	1.0-2.0	G53	2556990.108	38438113.581			2556989.825	38438113.614				
		G23	2557030.941	38438071.82			2557030.918	38438071.58				
		G24	2557044.677	38438079.8			2557044.724	38438079.67				
		G26	2557023.566	38438108.35			2557023.412	38438108.48				
R2-3		G27	2557006.905	38438092.65	621	1	2557006.842	38438092.54	622	1.01	+娩 ━	
K2-3		С	2557023.989	38438108.09	621	1	2557023.989	38438108.09	633	1.01	增大	
		d	2557032.294	38438089.58			2557032.294	38438089.58				
		e	2557039.15	38438092.45			2557039.15	38438092.45				
		2SMT09	2557028.823	38438092.563			2557028.823	38438092.563				污染点

表 3.4-16 第二层疑似污染土、环境管理土清挖前后拐点信息表

修复区域	深度范 囲 (m)	编号		标及高程(m)	方案清 挖面积 (m²)	方案清挖深度		些标及高程(m)	实际清挖 面积 (m²)	实际平均 清挖深度 (m)	清挖 范围 对比
	(111)		X(纵坐标)	Y(横坐标)	(111)	ΔH	X(纵坐标)	Y(横坐标)	(111)	ΔH	70 10
		b18	2557013.456	38438098.820			2557013.448	38438098.927			
		KD04	2557011.957	38438122.106			2557011.898	38438122.055			
hj1-3-1	1.0-1.5	b04	2557003.756	38438121.474	198	0.50	2557003.954	38438121.424	196①	0.3①	缩小
		G27	2557006.905	38438092.645			2557006.909	38438092.658			
		2SMT11	2557011.105	38438114.087			2557011.105	38438114.087			
		G26	2557023.566	38438108.350			2557023.412	38438108.480			
		f	2557019.118	38438111.409			2557019.118	38438111.409			
		b	2557010.484	38438132.647			2557010.554	38438132.467			
1 4 1	1520	G09	2557009.792	38438132.310	241	0.50	2557009.740	38438132.025	225(2)	0.50	炉山
ys1-4-1	1.5-2.0	d05	2557004.099	38438138.000	241	0.50	2557004.088	38438137.763	235②	0.50	缩小
		G31	2557003.472	38438123.924			2557003.657	38438124.316			
		KD04	2557011.898	38438122.055			2557011.898	38438122.055			
		b18	2557013.456	38438098.820			2557013.449	38438098.927			
		b18	2557013.456	38438098.820			2557013.449	38438098.927			
		KD04	2557011.957	38438122.106			2557011.898	38438122.055			
ys1-4-2	1.5-2.0	b04	2557003.756	38438121.474	198	0.50	2557003.954	38438121.424	196③	0.50	缩小
		G27	2557006.905	38438092.645			2557006.905	38438092.645			
		2SMT11	2557011.105	38438114.087			2557011.105	38438114.087			

注:①实际清挖方量小于设计清挖方量,由于污染土开挖后边界略大于设计的边界,该区域与污染土紧邻,导致该环境管理土的开挖区域缩小;该环境管理土区域清挖深度改变的原因在于该区域的起始标高较低,实际该层厚度较小,为保证日后污染土和疑似污染土的开挖量,该层的厚度根据实际调整,调整以污染点的标高为依据;

②实际开挖开挖面积小于方案开挖面积由于该区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致该区域实际开挖面积缩小;

③实际开挖开挖面积小于方案开挖面积由于该区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致该区域实际开挖面积缩小。

(二)清挖顺序

第一阶段第二层的开挖顺序: R2-3 污染土开挖→R2-1-1 污染土开挖→R2-2 污染 土开挖→基坑检测→环境管理土开挖→清洁土开挖→疑似污染土开挖→第一阶段第 二层开挖结束。

(三) 开挖工程量

依据土壤污染区域的清挖基坑测量放线结果进行计算,清挖污染土方 1124.5m³,清挖疑似污染土 215.5m³,清挖环境管理土 58.8m³。根据实测情况,基坑 开挖实际开挖量与方案污染开挖量对比情况见下表 3.4-17。

修复区域	方案清挖 面积 (m²)	方案 清挖 深度 ΔH	实际清挖 面积 (m²)	实际平均 清挖深度 (m) ΔH	方案开挖 方量 (m³)	实际开挖 方量 (m³)	超挖方 量 (m³)
R2-2	230	1	236	1.01	230.0	238.4	8.4
R2-1-1	227	1	242	1.02	227.0	246.8	19.8
R2-3	621	1	633	1.01	621.0	639.3	18.3
hj1-3-1	198	0.50	196	0.30	99.0	58.8	-40.21
ys1-4-1	241	0.50	235	0.50	120.5	117.5	-3②
ys1-4-2	198	0.50	196	0.50	99.0	98.0	-12

表 3.4-17 第二层开挖范围与方案范围对比表

三、第一阶段第三层

(一) 清挖基坑测量拐点坐标

第三层污染区拐点坐标及清挖前后信息见表 3.4-18, 疑似污染土、环境管理土 拐点清挖前后信息见表 3.4-19。

注:①该环境管理土区域清挖深度改变的原因在于该区域的起始标高较低,实际该层厚度较小,为保证日后污染土和疑似污染土的开挖量,该层的厚度根据实际调整,调整以污染点的标高为依据,实际开挖开挖面积小于方案开挖面积由于该区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致该区域实际开挖面积缩小;②实际开挖开挖面积小于方案开挖面积由于该区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致该区域实际开挖面积缩小。

表 3.4-18 第三层污染区拐点坐标及清挖前后信息表

修复区域	深度 范围 (m)	编号	方案拐点坐	际及高程(m)	方案清 挖面积 (m²)	方案清 挖深度 (m)	清挖后拐点坐	於标及高程(m)	实际清 挖面积 (m²)	实际平均 清挖深度 (m)	清挖范围	备注
	(111)		X(纵坐标)	Y (横坐标)	(111)	ΔH	X(纵坐标)	Y(横坐标)	(111)	ΔH	73 11	
		G23	2557030.941	38438071.82			2557030.918	38438071.59				
		G24	2557044.677	38438079.8			2557044.796	38438079.53				
		G50	2557004.479	38438146.65			2557004.285	38438146.64				
		G31	2557003.472	38438123.92			2557003.302	38438124.04				
		G53	2556990.108	38438113.58			2556989.78	38438113.67				
		G27	2557006.905	38438092.65			2557006.76	38438092.45				
R3-1-1	2.0-3.0	c	2557023.989	38438108.09	1303	1	2557023.989	38438108.09	1347	1.01	+	
K3-1-1	2.0-3.0	d	2557032.294	38438089.58	1303	1	2557032.294	38438089.58	1347	1.01	1 1 1 八	
		e	2557039.15	38438092.45			2557039.15	38438092.45				
		f	2557019.118	38438111.41			2557019.118	38438111.41			范 期	
		g	2557004.793	38438146.65			2557004.793	38438146.65				
		2SMT11	2557011.105	38438114.087			2557011.105	38438114.087				污染点
		2SMT12	38438132.308	2557009.792			38438132.308	2557009.792			增大	污染点
		2SMT09	2557028.823	38438092.563			2557028.823	38438092.563				污染点

表 3.4-19 第三层疑似污染土、环境管理土清挖前后拐点信息表

修复区域	深度范围	编号	方案拐点坐	标及高程(m)	方案清挖 面积 (m²)	方案 清挖 深度	清挖后拐点坐	於标及高程(m)	实际清挖 面积 (m²)	实际平均 清挖深度 (m)	清挖 范围 对比	备注
	(m)		X(纵坐标)	Y (横坐标)	(III-)	ΔH	X(纵坐标)	Y(横坐标)	(III-)	ΔH	刈几	
		G31	2557003.472	38438123.924			2557003.302	38438124.036				
ys1-6-1 2.5-	2.5-3.0	g	2557004.793	38438146.646	156	0.50	2557004.793	38438146.646	155	0.50	缩小	
		G52	2556990.160	38438135.630			2557010.554	38438132.467				

(三) 开挖工程量

依据土壤污染区域的清挖基坑测量放线结果进行计算,清挖污染土方 1360.5m³,清挖疑似污染土 77.5m³。根据实测情况,基坑开挖实际开挖量与方案污染开挖量对比情况见表 3.4-20。

表 3.4-20 第三层开挖范围与方案范围对比表

修复区域	方案清挖 面积 (m²)	方案 清挖 深度 ΔH	实际清挖 面积 (m²)	实际平均 清挖深度 (m) △H	方案开挖 方量 (m³)	实际开挖 方量 (m³)	超挖方量 (m³)
R3-1-1	1303	1	1347	1.01	1303.0	1360.5	57.5
ys1-6-1	156	0.50	155	0.50	78.0	77.5	-0.5①

注:①ys1-6-1与污染土紧邻,污染土开挖后边界略大于设计的边界,导致该开挖区域缩小。

四、第一阶段第四、五层

(一)清挖基坑测量拐点坐标

第三层污染区拐点坐标及清挖前后信息见表 3.4-21。

表 3.4-21 第三层污染区拐点坐标及清挖前后信息表

修复区域		编号	方案拐点坐	际及高程(m)	方案清 挖面积 (m²)	方案 清挖 深度	清挖后拐点丛	坐标及高程(m)	实际清 挖面积 (m²)	实际平 均清挖 深度 (m)	清挖 范围 对比	备注
			X (纵坐标)	Y (横坐标)		ΔН	X(纵坐标)	Y (横坐标)		ΔН	. •	
		G23	2557030.941	38438071.82			2557030.858	38438071.55				
		G24	2557044.677	38438079.8			2557044.79	38438079.54				
		G50	2557004.479	38438146.51			2557004.793	38438146.68				
		G31	2557003.472	38438123.92			2557003.158	38438123.93				
	-	G52	2556990.16	38438135.63			2556989.769	38438135.64				
		G53	2556990.108	38438113.58			2556989.867	38438113.64				
		G27	2557006.905	38438092.65			2557006.723	38438092.53				
R4-3	3.0-4.0	c	2557023.989	38438108.09	1477	1	2557023.989	3.989 38438108.09	增大			
K4-3	3.0-4.0	d	2557032.294	38438089.58	14//	1	2557032.294	38438089.58	1300	1.02	相八	
		e	2557039.15	38438092.45			2557039.15	38438092.45				
		f	2557019.118	38438111.41			2557019.118	38438111.41				
		g	2557004.793	38438146.65			2557004.793	38438146.65				
		2SMT11	2557011.105	38438114.087			2557011.105	38438114.087				污染 点
		2SMT12	38438132.308	2557009.792			38438132.308	2557009.792				污染 点
		2SMT09	2557028.823	38438092.563			2557028.823	38438092.563				污染 点

修复区域	深度 范围 (m)	编号	方案拐点坐	标及高程(m)	方案清 挖面积 (m²)	方案	清挖后拐点鱼	些标及高程(m)	实际清 挖面积 (m²)	实际平 均清挖 深度 (m)	清挖 范围 对比	备注
			X (纵坐标)	Y (横坐标)		ΔH	X (纵坐标)	Y (横坐标)		ΔН	. •	
		G23	2557030.941	38438071.82			2557030.838	38438071.56				
		G24	2557044.677	38438079.8			2557044.843	38438079.41				
		G61	2557026.417	38438121.58			2557026.417	38438121.58				
		G62	2557011.105	38438114.09			2557010.853	38438114.22				
		G27	2557006.905	38438092.65			2557006.587	38438092.63				
R5-3	4.0-5.0	С	2557023.989	38438108.09	796	1	2557023.989	38438108.09	814	1.02	增大	
		d	2557032.294	38438089.58			2557032.294	38438089.58				
		e	2557039.15	38438092.45			2557039.15	38438092.45				
		f	2557019.118	38438111.41			2557019.118	38438111.41				
		h	2557016.88	38438116.91			2557016.744	38438117.25				
		2SMT09	2557028.823	38438092.563			2557028.823	38438092.563				污染 点

(三)清挖挖工程量

依据土壤污染区域的清挖基坑测量放线结果进行计算,清挖污染土方 1536.1m³。 根据实测情况,基坑开挖实际开挖量与方案污染开挖量对比情况见表 3.4-22。

表 3.4-22 第四、五层开挖范围与方案范围对比表

修复区域	方案清挖面积	方案清 挖深度	实际清挖 面积	实际平均清 挖深度 (m)	方案开 挖方量	实际开挖 方量	超挖方量
	(m ²)	ΔH	(m ²)	ΔH	(m^3)	(m ³)	(m ³)
R4-3	1477	1	1506	1.02	1477.0	1536.1	59.1
R5-3	796	1	814	1.02	796.0	830.3	34.3

3.4.3.6 各区污染土开挖方量汇总

各区污染土、疑似污染土实际开挖深度和土方量汇总见表 3.4-23。

表 3.4-23 污染区域开挖工程量统计表

	农 5.1-25 17米区列月6上任重先月农								
修复区域	种类	方案清挖面积 (m²)	方案清挖 深度	实际清挖面积 (m²)	实际平均清挖深 度(m)	方案开挖方量 (m³)	实际开挖方量 (m³)	开挖方式	备注
			ΔH		ΔH				
R1-4	污染土	230	1	241	1.01	230.0	243.4	垂直开挖	
R2-2	污染土	230	1	236	1.01	230.0	238.4	垂直开挖	
R2-1-1	污染土	227	1	242	1.02	227.0	246.8	垂直开挖	
R2-3	污染土	621	1	633	1.01	621.0	639.3	垂直开挖	
R3-1-1	污染土	1303	1	1347	1.01	1303.0	1360.5	垂直开挖	
R4-3	污染土	1477	1	1506	1.02	1477.0	1536.1	垂直开挖	
R5-3	污染土	796	1	814	1.02	796.0	830.3	垂直开挖	
hj1-1-1	环境管理土	458	0.50	470	0.51	229.0	239.7	垂直开挖	
ys1-2-1	疑似污染土	573	0.50	582	0.50	286.5	291.0	垂直开挖	
yhj1-2-1	疑似环境管理土	224	0.50	225	0.53	112.0	119.3	垂直开挖	
hj1-2-1	环境管理土	198	0.50	200	0.60	99.0	120.0	垂直开挖	
yhj1-2-2	疑似环境管理土	42	0.50	43	0.70	21.0	30.1	垂直开挖	
hj1-3-1	环境管理土	198	0.50	196	0.3^	99.0	58.8	垂直开挖	
ys1-4-1	疑似污染土	241	0.50	235	0.50	120.5	117.5	垂直开挖	
ys1-4-2	疑似污染土	198	0.50	196	0.50	99.0	98.0	垂直开挖	
ys1-6-1	疑似污染土	156	0.50	155	0.50	78.0	77.5	垂直开挖	

说明:表中方量为实方,未减去筛筛上物体积。

3.4.4 污染土壤预处理

污染土壤在外运水泥窑协同处置之前需要进行预处理,污染土壤预处理工艺流程主要包括:污染土壤筛分、筛上物冲洗等处理过程。

污染土壤从污染区域开挖后,运输至污染土堆场,进行筛分处理,筛分下来的 筛上物,集中收集至洗石场进行清洗,以去除附着在大粒径筛上物上的污染物。清 洗干净的筛上物在检测合格后进行基坑回填。冲洗后产生的废水进入废水处理设备 进行处理。

(1) 污染渣土筛分

挖出后的污染土壤进行筛分处理。筛分采用专业筛分设备(ALLU 筛分斗)进行作业,筛分分级产生的粒径≥5cm 的污染筛上物和粒径<5cm 的污染土壤分开堆置。筛分后的污染土壤外运水泥窑协同处置,筛分出的大粒径筛上物进行冲洗处理。

(2) 污染筛上物冲洗

筛分后的污染筛上物由运输车运至洗石场冲洗。在挖机协助下对冲洗后的筛上 物堆置待检。

筛上物厚度为单层堆料,采用挖掘机搅动,平铺。冲洗区周边设置围堰,防止冲洗水溅出;冲洗水经洗石区四周排污沟收集后排入沉淀池。冲洗过后的清洁筛上物,由装载机进行场内物料倒运,每批次清洗筛上物量约 8m³左右,冲洗时间不少于 10min。

冲洗后的干净筛上物待采样验收合格后回填基坑。

(3) 冲洗污泥处理

冲洗处理产生的污泥运至污染土堆场按污染土壤外运至水泥窑协同处置。

(4) 预处理工程量

1) 筛分工程量

本项目全部污染土壤和桩土均进行筛分处理,以达到修复工艺粒径参数控制

要求,即筛分工程量 6375m³ (实方)。

2) 筛上物冲洗工程量

经过筛分后的筛上物,全部转移至洗石区进行冲洗,工程量统计见表 3.4-24。

污染土体积 筛上物虑方 筛上物率 筛上物实方数量 阶段&深度 区域 (实方 m³) 量 (m³) (m^3) (%) 0 - 1.0R1-4 243.4 40 33 13.8 238.4 R2-1-1 1.0 - 2.0R2-2 246.8 200 167 14.8% R2-3 一阶段 639.3 9.9% 2.0-3.0 R3-1-1 1360.5 160 133 3.0-4.0 150 125 8.3% R4-3 1536.1 4.0-5.0 R5-3 830.3 40 33 4.1% 灌注桩土 1271.4 17 1.3% 20 / R1-4表面混凝土 / 48③ 60 / 小计 6375 670 **556** /

表 3.4-24 渣块工程量统计表

2) 筛上物冲洗程度检查

修复单位完成第一阶段的筛上物完成冲洗后,监理单位在效果评估单位见证对筛上物的附着物量进行抽查,抽查结果见表 3.4-25。

表 3.4-25 筛上物的附着物量抽查记录表

取样编号	样品代表体积 (m³)	筛上物附着土壤称量结果 (kg)	每 100m³ 筛上物附着的土壤量结果 (kg)	
1	215	140	64.2	

注:由于收集到的筛上物附着土壤夹杂大量碎石和水,无法逐一分离,斗车体积大且重量较小无法用普通台秤称量,基于上述两个情况无法单独测量筛上物附着土壤的重量,实际筛上物附着土壤量小于140kg。

3.4.5 土壤运输

3.4.5.1 场内土壤运输

土方场内的运输严格各项环境管理措施进行运输,其中污染土的运输线路见图

注: 1、筛上物虚方=场内中转车数×10m³/车;

^{2、}筛上物实方量=筛上物虚方量/虚方系数,虚方系数取 1.2。

^{3、}该部分为 R1-4 的混凝土地面,厚度 0.2m,不属于污染层,但由于紧邻污染层,因此纳入到冲洗对象,数量为 $238.6 \times 0.2 \approx 48 m^3$ 。

3.4-37。疑似污染土、疑似环境管理土、环境管理土根据道路和各自堆放区的进口位 置调整运输路线。

3.4.5.2 污染土壤外运

污染土壤经过预处理,除去铁器、混凝土等影响水泥生产和处置效果的杂物, 水泥窑土壤进场的标准见表 3.4-27。

指标	标准数值	单位	备注
粒径	<150	mm	/
含水率	<60	%	/
砷	400	mg/kg	/
铅	800	mg/kg	二类筛选值
乙苯	28	mg/kg	二类筛选值
苯并(a)芘	1.5	mg/kg	二类筛选值
石油烃	4500	mg/kg	二类筛选值

表 3.4-27 水泥窑污染土壤进场标准

经危险属性鉴别不属于危废的污染土壤外运前向项目所在地及污染土壤接受地环境主管部门报备转运计划。本项目污染土壤运输采用陆路运输,运输汽车采用总载重 49t(±3%),安装车载 GPS 定位终端的重型半挂牵引车。

(1) 进场检查登记

运输车辆进场时,现场人员首先对车辆牌照、运输人员身份等进行检查、确认,运输车辆或驾驶人员与车辆登记信息不符,严禁车辆进场。检查符合国家道路交通安全管理法规相关要求及进场条件的车辆,在保安处办理进场登记手续,并签字确认后方可驾驶运输车辆进入现场。

(2) 场内行驶和装载前整理

进场后,运输车辆必须严格遵守现场管理制度,按照现场规定路线驶入待检区等待检查。待检区内现场运输管理员负责对进场车辆的外观,车辆状态以及车辆防渗设施等进行检查,检查合格后,运输车辆依次进入现场等待区等待装载。

(3) 运输管理

- 1)污染土壤运至水泥厂的过程填写《污染土壤运输联单》,经施工单位、监理单位、运输单位和接收单位四方签字、盖章。
- 2)污染土壤转运过程每运输一车,填写一份转移联单,到达目的地后,接收负责人按联单填写内容及水泥厂过磅单对污染土壤进行接收。
- 3)运输车辆按照报备的运输路线行驶,驾驶人员不得随意改道,运输时间符合 交通管理要求,严禁超速超载,遵守交通规则,安全运输,每运输车次均导出行车 轨迹图,核对运输路线。
- 4)运输车厢顶部安装密闭装置,采用规定的防水篷布覆盖密闭形式,不可随意 覆盖。篷布具有良好的密封性,当承载车辆直线行驶、转弯、紧急制动或行经颠簸 路面时,不得遗撒、扬尘。
- 5) 厂区出口处设置洗车平台,运输车辆每次出场前车轮及车身残存的土冲洗干净后方可离场,严防"带泥上路",每台车冲洗时间不小于 10 min。洗车设施主要包含洗车池、沉淀池、排水沟等。在沉淀池内设一台抽水泵,以便洗车池内水更换和循环利用。车辆冲洗的废水抽至废水处理设备处理。

本地块污染土壤转运至水泥窑协同处置单位,运输路线如下:

- ①广东清远广英水泥有限公司。途径广州环城高速、许广高速;
- ②阳春海螺水泥有限责任公司。途径广州环城高速、沈海高速、广佛肇高速、 广昆高速、汕湛高速。

3.4.6 水泥窑协同处置

第一阶段水泥窑协同处置单位为清远海螺环保科技有限责任公司和阳春海螺环保科技有限公司,该三家单位收货前,通过外观、转移联单、车辆运输计划信息等进行判断污染土是否与项目污染土一致。

入厂后水泥窑公司实验室对污染土进行抽检确认,有异常波动的土壤及时调整 入窑方案。

本项目第一阶段外运至水泥窑协同处置单位的污染土壤共 305 车,合计 9926.58 吨(以水泥窑协同处置公司的地磅数量为准),其中外运至清远海螺环保科技有限责任公司 239 车,共 7814.71 吨,外运至阳春海螺环保科技有限公司 66 车,共 2111.87 吨。本场地污染土壤被完全消纳,水泥窑协同处置单位的接收证明如下:

3.4.7 废水处理与去向

3.4.7.1 废水处理工艺流程

本项目废水处理设施的工艺流程见图 3.4-48。

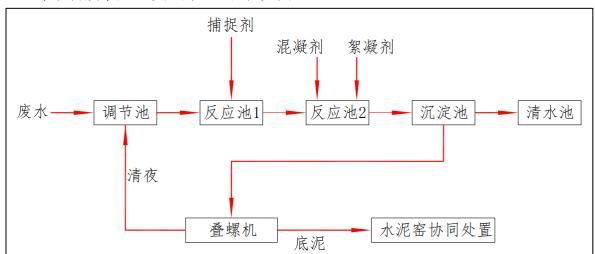


图 3.4-51 废水处理工艺流程

3.4.7.2 处理时间及处理量

本项目的污水处理站设计最大处理规模为 5m³/h。

本项目第一阶段处理时间自 2024 年 9 月 16 日开始进行,至 2024 年 11 月 3 日结束,共计收集废水 440m³,处理后废水约 400m³(约有 40m³ 废水暂存在调节池未进行处理),处理后的水经检测达标后全部排入市政废水管网。污水站进水量情况见表 3.4-28,污水站处理水量情况见表 3.4-29, 达标水外运情况见表 3.4-30,项目水平衡见图 3.4-31。

表 3.4-28 污水站进水量台帐汇总表

时间	天气	抽基坑水量	洗车废水量	 洗石产生的废水
2024-9-16	多云	20	/	/
2024-9-18	晴	10	/	/
2024-9-19	多云	20	/	
2024-9-19	多云	/	/	15
2024-9-19	多云	15	/	/
2024-9-26	ラム 阵雨	15	/	/
2024-9-27	阵雨	20	/	/ /
2024-9-27	多云	20	4	/
2024-9-29	多云	30	/	/
2024-9-29	多云	/	4	/
2024-10-4	多云	/	/	12
2024-10-5	阴转多云	/	3	/
2024-10-6	多云	/	<i>J</i>	13
2024-10-6	多云	/	3	/
2024-10-6	ラム 晴	/	1	
2024-10-7	多云	25	/	/
2024-10-8	多云	/	1	
2024-10-8	多云	/	2	
2024-10-9	ラム 晴	/	4	/
2024-10-11	晴晴	15	4	
2024-10-11	晴晴	15	/	
2024-10-12	晴晴	/	5	
2024-10-13	阵雨	20	/	
	库 雨		,	
2024-10-14 2024-10-16	库 雨	20	4	/
2024-10-16	阵雨 阵雨	20	/	11
2024-10-16	阴	18	/	
2024-10-17	多云	/	/	10
2024-10-18	多云	/	1	
	多云	10	1	
2024-10-20 2024-10-20	多云	10	1	/
2024-10-20	多云	/	5	
2024-10-21	多云	5)	
2024-10-21	多石 晴	10	/	
2024-10-22	晴	/	6	/
2024-10-22	多云	/	2	
2024-10-23	多云多云	/	6	
2024-10-24	多云多云	/	7	
		/	/	10
2024-10-25	多云	/	3	19
2024-10-26	阵雨	15	3	
2024-10-26		15	/ A	
2024-10-27	多云	/	4	
2024-10-29	多云四	/	8	
2024-10-30	阴蛙	/	1	
2024-10-31	晴	/	3	
2024-11-1	晴	/	5	/

时间	天气	抽基坑水量	洗车废水量	洗石产生的废水	
2024-11-2	多云	/	2	/	
2024-11-2	多云	/	3	/	
各类废水小计		268 92		80	
合计	-	440			

表 3.4-29 污水站处理水量台帐汇总表

时间	天气	处理水量
2024-9-16	多云	20
2024-9-18	晴	10
2024-9-19	多云	20
2024-9-25	多云	15
2024-9-26	阵雨	15
2024-9-27	阵雨	20
2024-9-29	多云	30
2024-10-8	多云	15
2024-10-9	多云	15
2024-10-11	晴	10
2024-10-13	晴	30
2024-10-14	阵雨	30
2024-10-16	阵雨	30
2024-10-17	阴	10
2024-10-18	多云	10
2024-10-20	多云	20
2024-10-21	多云	30
2024-10-22	晴	20
2024-10-26	阵雨	20
2024-10-28	多云	20
2024-10-31	晴	10
合计		400

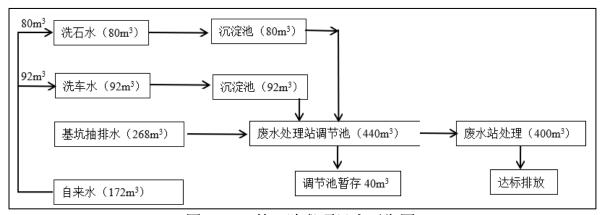


图 3.4-52 第一阶段项目水平衡图

3.4.7.3 处理效果

本项目一共处理废水 400m³, 废水处理效果检测由环境监理委托第三方检测单位进行, 按三个批次监测, 其中:

- 1)2024年9月28日检测一批次,该批次水量为100m³,接《水污染排放标准》(DB4426-2001)三级标准及《废水排入城镇下水道水质标准》(GB/T31962-2015)B级标准较严值进行检测,结果显示达标;
- 2)2024年10月30日检测一批次,该批次水量为200m³,按《水污染排放标准》(DB4426-2001)三级标准及《废水排入城镇下水道水质标准》(GB/T31962-2015)B级标准较严值进行检测,结果显示达标;
- 3)2024年11月14日检测一批次,该批次水量为100m³,按《水污染排放标准》(DB4426-2001)三级标准及《废水排入城镇下水道水质标准》(GB/T31962-2015)B级标准较严值进行检测,结果显示达标。

3.4.8.4 废水去向

废水站出水由监理委托第三方检测单位检测达标后,排入市政污水管网,去向 汇总见表 3.4-31。

时间	排入市政废水管网水量(m³)
10月10日	100
11月8日	200
11月22日	100
合计	400

表 3.4-31 污水站出水去向台帐汇总表

3.4.8 危险废物清挖及转移

本项目存在被鉴别为危险废物的污染土壤,修复单位按照危险废物的相关法规、标准与规范于 2024年 10 月 23 日-11 月 3 日,完成危险废物进行清挖和外运工作,危险废物运输单位为珠海市粤隆运输有限公司,处置单位为韶关东江环保再生资源发展有限公司,危险废物按"含有或沾染毒性、感染性危险废物的废弃包装

物、容器、过滤吸附介质(HW900-041-49)"进行处置,处置方式为安全填埋。

危废基坑完成清挖后,效果评估单位委托广州竞轩环保科技有限公司对危险废物清挖完成情况进行验收,于 2024年11月18日,项目委托单位广东中加检测技术股份有限公司组织召开了《广州市木材公司地块危险废物土壤清挖完成情况验收报告》(以下称《报告》)专家评审会,会议邀请3名专家组成专家组对《报告》开展技术评审,评审结果为通过。《报告》的结论如下:

"广州市木材公司地块危险废物清挖完成情况验收工作参照《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、《建设用地土壤污染修复效果评估监测质量控制技术规范》(DB44/T 2417-2023)、《危险废物鉴别技术规范》(HJ298-2019)等要求进行,分别从浸出毒性、毒性物质含量进行检测分析,并进行相应的采样和检测分析,结果表明,5个基坑(6个危废区域)检测结果均未超出相应的标准限值。结合现场勘查、资料分析及检测结果进行综合判定,判定结果为:广州市木材公司地块危险废物清挖后遗留的基坑污染土壤不具有危险特性,不属于危险废物,本次危废清挖已到位,无需继续扩大范围进行清挖。

综上,《广州市木材公司地块待修复污染土壤危险特性鉴别报告》中判定的危险 废物已全部按'含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附 介质(900-041-49)'完成转运,地块内已无积存的危险废物。"

3.4.9 堆体信息

第一阶段修复工程完工后,现场暂存的堆体包括检测合格的疑似污染土和疑似环境管理土、冲洗合格的筛上物,待效果评估验收后回填于基坑,具体堆体信息见表 3.4-32,堆体现状见图 3.4-56~3.4-57。

 筛上物堆编号
 区域
 实方量 (m³)
 虚方量 (m³)

 ys1-2-1
 ys1-4-1

 ys1-2-1

 ys1-4-1

 585

 720

 疑似污染土堆场南侧

表 3.4-32 现场堆体信息

筛上物堆编号	筛上物堆编号 区域		虚方量 (m³)	堆放位置	
	ys1-4-2				
	ys1-6-1				
疑似环境管理	yhj1-2-1	1.40	100	EZ MUZZÝM I LÁ LZ 🛨 /ml	
土堆1	yhj1-2-2	149	180	疑似污染土堆场东侧 	
筛上物堆1	/	556	670	堆石区北侧	
环境管理土堆1	hj1-1-1、hj1-2-1、hj1-3-1	418.5	510	环境管理土堆场东侧	

3.4.10 工程量核算

第一阶段污染区域共清挖污染土壤 5094.8m³ (实方),扣除筛分筛上物 491m³ (实方)后,筛下污染土壤 4603.3m³ (实方)。清挖灌注桩土 1271.4m³ (实方),扣除筛分筛上物 17m³ (实方)后,筛下污染土壤 1254.4 m³ (实方)。疑似污染土工程量 584m³ (实方),废水处理设施/沉淀池底泥 8.8m³。

污染土壤和灌注桩土全部外运至水泥窑协同处置单位——广东清远广英水泥有限公司和阳春海螺水泥有限责任公司。广东清远广英水泥有限公司和阳春海螺水泥有限责任公司自 2024 年 9 月 28 日至 2024 年 11 月 3 日接收广州市木材公司地块土壤污染修复项目的污染土壤,合计 9926.58 吨。

污染土清挖工程量统计见表 3.4-33, 筛上物工程量统计见表 3.4-34, 疑似污染土清挖工程量统计见表 3.4-35, 土方流转清况见表 3.4-36, 项目土方平衡见图 3.4-58。

方案方量 开挖后报验 实方方 阶段&深 方案面 虚方量 区域 开挖时间 (实方) 量(实方) 量差值 度 积(m²) (m^3) (m^3) (m^3) (m^3) 0 - 1.0R1-4 230 230 243.4 13.4 310 2024.9.16 R2-1-1 227 227 246.8 19.8 290 2024.9.28 2024.9.28-R2-2 230 230 238.4 8.4 290 1.0-2.0 2024.9.29 阶 2024.9.25-R2-3 621 621 639.3 18.3 760 段 2024.9.27 2024.10.11-2.0 - 3.0R3-1-1 1303 1303 1360.5 57.5 1610 2024.10.14 2024.10.16-3.0-4.0 R4-3 1477 1477 1536.1 59.1 1800 2024.10.17

表 3.4-33 污染土工程量统计表

阶	·段&深 度	区域	方案面 积(m²)	方案方量 (实方) (m³)	开挖后报验 量(实方) (m³)	实方方 量差值 (m³)	虚方量 (m³)	开挖时间
								2024.10.22- 2024.10.25
	4.0-5.0	R5-3	796	796	830.3	34.3	980	2024.11.1
	灌注桩土		/	/	1271.43	/	1600	2024.9.15、 2024.10.2- 2024.10.4
废力	水处理设施 底派	奄/沉淀池 2	/	/	8.8	/	/	/
小计		4884	4884	6375	210.8	/	/	

备注: ①表内所示方量均未减去筛分出筛上物的量;

表 3.4-34 筛上物工程量统计表

阶段&深度 区域		区域	污染土体积 (实方 m³)	筛上物虚方量 (m³)	筛上物实方数 量(m³)	筛上物率 (%)		
	0-1.0m	R1-4	243.4	40	33	13.7		
		D2 1 1	246.8					
		R2-1-1 R2-2 R2-3	238.4	200	167	14.8		
一			639.3					
阶 段		R3-1-1	1360.5	160	133	9.8		
	3.0-4.0m	R4-3	1536.1	150	125	8.1		
	4.0-5.0m	R5-3	830.3	40	33	4.0		
	R1-4表面混凝土		/	60	48③	/		
	灌注桩土		1271.4	20	17	1.3		
废	水处理设施/沉淀池底泥		受水处理设施/沉淀池底泥 8		8.8	/	/	/
小计		小计		670	556	/		

注: ①筛上物虚方=场内中转车数×10m³/车;

表 3.4-35 疑似污染土清挖工程量统计表

区域名称	种类	种类 方案开挖方量 (m³)		虚方量 (m³)
hj1-1-1	环境管理土	229.0	239.7	280

②实方量=基坑面积×开挖深度,虚方量=运输车数×10m³/车;

③本项目施打灌注桩时的灌注桩土按污染土进行处理;

④废水处理设施/沉淀池底泥为废水处理设施、洗车区沉淀池、洗石区沉淀池的底泥,按实方量=斗车数× $0.2m^3/$ 车。

②筛上物实方量=筛上物虚方量/虚方系数,虚方系数取 1.2;

③该部分为 R1-4 的混凝土地面,厚度 0.2m,不属于污染层,但由于紧邻污染层,因此纳入到冲洗对象,数量为 $238.6 \times 0.2 \approx 48 m^3$ 。

yhj1-2-1	疑似环境管理土	112.0	119.3	140
hj1-2-1	环境管理土	99.0	120.0	150
yhj1-2-2	疑似环境管理土	21.0	30.1	40
hj1-3-1	环境管理土	99.0	58.8	80
,	小计 1		567.9	690
ys1-2-1	疑似污染土	286.5	291.0	350
ys1-4-1	疑似污染土	120.5	117.5	150
ys1-4-2	疑似污染土	99.0	98.0	120
ys1-6-1 疑似污染土		78.0	77.5	100
,	小计 2	584.0	584.0	720

备注: ①虚方量=运输车数×10m³/车;

②表中数据存在实际开挖方量小于方案开挖方量,原因存在2点:

a. 环境管理土清挖深度改变,原因在于该区域的起始标高较低,实际该层厚度较小,为保证日后污染土和疑似污染土的开挖量,该层的厚度根据实际调整,调整以污染点的标高为依据;

b. 面积缩小,原因在于区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致的后续的开挖区域缩小。

表 3.4-36 土壤流转情况汇总表

日期	区域	每日污染土 壤虚方数 (m³)	累计开挖 虚方数 (m³)	每日污染土 壤实方数 (m³)	每日废水处理 设施/沉淀池 底泥(m³)	累计废水处理 设施底泥/沉 淀池(m³)	每日筛上 物虚方数 (m³)	累计筛上 物虚方数 (m³)	毎日转运 方量(t)	累计转运 方量(t)
2024-9-15	桩土	600	600	470.6	/	/	20	20		
2024-9-16	R1-4	310	910	240.3	/	/	60	80		
2024-9-18	R1-4	0	0	0.0	/	/	40	120		
2024-9-25	R2-3	160	1070	134.5	/	/		120		
2024-9-26	R2-3	300	1370	252.1	/	/		120		
2024-9-27	R2-3	300	1670	252.1	/	/		120		
2024-9-28	R2-1-1	290	1960	241.7	/	/		120	454.52	454.52
2024-9-28	R2-2	50	2010	42.0	/	/		120	454.52	454.52
2024-9-29	R2-2	240	2250	201.7	/	/		120	483.31	937.83
2024-10-2	桩土	400	2650	313.7	/	/		120		937.83
2024-10-3	R2-3、 R2-1-1、 R2-2	/	/	/	/	/	200	320	/	937.83
	桩土	400	3050	313.7	/	/	/	/		
2024-10-4	桩土	200	3250	156.9	/	/	/	320	/	937.83
2024-10-6	/	/	3250	/	/	/	/	320	390.48	1328.31
2024-10-7	/	/	3250	/	/	/	/	320	/	1328.31
2024-10-8	/	/	3250	/	/	/	/	320	133.18	1461.49
2024-10-9	/	/	3250	/	/	/	/	320	226.27	1687.76
2024-10-11	R3-1-1	150	3400	125.0	/	/	/	320	/	1687.76
2024-10-12	R3-1-1	450	3850	375.0	/	/	/	320	467.42	2155.18
2024-10-13	R3-1-1	500	4350	416.7	2.00	2.00	/	320	556.12	2711.3
2024-10-14	R3-1-1	510	4860	425.0	/	2.00	/	320	527.64	3238.94
2024-10-15	R3-1-1	/	/	/	/	2.00	160	480	/	3238.94

日期	区域	每日污染土 壤虚方数 (m³)	累计开挖 虚方数 (m³)	每日污染土 壤实方数 (m³)	每日废水处理 设施/沉淀池 底泥(m³)	累计废水处理 设施底泥/沉 淀池(m³)	每日筛上 物虚方数 (m³)	累计筛上 物虚方数 (m³)	每日转运 方量(t)	累计转运 方量(t)
2024-10-16	R4-3	300	5160	250.0	/	2.00	/	480	/	3238.94
2024-10-19	R4-3	550	5710	458.3	/	2.00	/	480	135.58	3374.52
2024-10-20	/	/	5710	/	/	2.00	/	480	133.37	3507.89
2024-10-21	/	/	5710	/	2.40	4.40	/	480	547.64	4055.53
2024-10-22	R4-3	450	6160	375.0	/	4.40	/	480	665.18	4720.71
2024-10-23	/	/	6160	/	/	4.40	/	480	258.65	4979.36
2024-10-24	/	/	6160	/	/	4.40	/	480	682.59	5661.95
2024-10-25	R4-3	500	6660	416.7	/	4.40	150	630	838.18	6500.13
2024-10-26	R5-3	350	7010	291.7	/	4.40	/	630	389.75	6889.88
2024-10-27	R5-3	320	7330	266.7	/	4.40	/	630	449.84	7339.72
2024-10-28	/	/	7330	/	/	4.40	/	630	/	7339.72
2024-10-29	/	/	7330	/	2.40	6.80	/	630	1001.55	8341.27
2024-10-30	R5-3	310	7640	258.3	/	6.80	/	630	100.27	8441.54
2024-10-31	/	/	7640	/	/	6.80	/	630	397.05	8838.59
2024-11-1	/	/	7640	/	/	6.80	/	630	594.94	9433.53
2024-11-2	/	/	7640	/	/	6.80	40	670	164.7	9598.23
2024-11-3	/	/	7640	/	/	6.80	/	670	328.35	9926.58
2024-11-7	/	/	7640	/	2.00	8.80	/	670	/	9926.58
总计	/	7640	/	/ = 汕车数×0.2m³/4	8.8	/	670	/	9926.58	/

注: 虚方数量=车数×10m³/车,废水处理设施/沉淀池底泥方量=斗车数×0.2m³/车。

3.4.11 修复实施时间节点

项目修复实施期间时间节点见表 3.4-37。

表 3.4-37 修复实施时间节点

工程节点	起始时间	终止时间
1.修复方案备案	/	2024月8月2日
2.施工准备阶段	2024年3月21日	2024年10月20日
搭建项目部	2024年3月21日	2024年3月28日
场地清表、平整	2024年6月19日	2024年7月5日
污染土堆场1和污染土堆场2建设	2024年5月1日	2024年5月8日
废水处理设施安装	2024年5月14日	2024年5月15日
环境管理土堆场建设	2024年5月31日	2024年6月7日
洗石区建设	2024年5月15日	2024年5月22日
堆石区建设	2024年5月31日	2024年6月7日
疑似污染土堆场地建设	2024年5月16日	2024年5月23日
洗车区施工建设	2024年5月25日	2024年6月1日
施打搅拌桩	2024年7月12日	2024年8月28日
施打高压旋喷桩	2024年9月15日	2024年9月19日
施打灌注桩	2024年8月24日	2024年9月29日
施打北面冠梁	2024年10月9日	2024年10月20日
3.污染土基坑开挖	2024年9月16日	2024年10月30日
R1-4	2024年9月16日	2024年9月16日
R2-3、R2-1-1、R2-2	2024年9月25日	2024年9月29日
R3-1-1	2024年10月11日	2024年10月14日
R4-3	2024年10月16日	2024年10月25日
R5-3	2024年10月26日	2024年10月30日
4.污染土壤外运水泥窑协同处置	2024年9月27日	2024年11月12日
5.疑似污染土与疑似环境管理土开挖	2024年9月25日	2024年10月24日
ys1-2-1	2024年9月25日	2024年9月26日
ys1-4-1	2024年10月11日	2024年10月11日
ys1-4-2	2024年10月11日	2024年10月11日
ys1-6-1	2024年10月24日	2024年10月24日
yhij1-2-1	2024年9月28日	2024年9月28日
yhij1-2-2	2024年9月28日	2024年9月28日
6.疑似污染土与疑似环境管理土开挖	2024年9月27日	2024年10月10日
hj1-1-1	2024年9月27日	2024年9月27日
hj1-2-1	2024年9月27日	2024年9月27日
hj1-3-1	2024年10月10日	2024年10月10日
7.危险废物土壤清挖及转运	2024年10月23日	2024年11月3日

3.4.12 《施工总结报告》结论

2024年8月2日,《修复方案》及《环境监理方案》完成广东省建设用地污染地块信息系统备案。2024年8月3日开始展开了本地块土壤污染修复工作,至2024年11月7日,修复单位已完成本地块第一阶段污染土壤清挖和外运、清挖筛上物的冲洗等全部修复工作,在实施过程中,严格依据相关法律法规、技术规范与标准、已备案的《修复方案》和《环境监理方案》等技术文件开展现场修复工作,结论具体如下:

综上所述,修复单位完成了广州市木材公司地块土壤污染修复项目第一阶段的修 复工作,全过程严格按照《修复方案》中的技术及施工要求实施,各项检测结果均满 足修复方案的要求,已达到修复目的,满足申请阶段性修复效果评估的条件。

3.5 环境保护措施落实情况

3.5.1 环境保护措施落实范围及内容

本次修复项目环境监理内容为:对污染土壤清挖工程量、修复过程环境保护污染 防范措施及效果进行监理,并对施工阶段的大气、水、噪声环境等进行二次污染监测。 环境监理的内容如下:

- 1)按国家有关法律法规相关文件及管理制度对工程施工过程中的环境保护实施全面的监督与管理,并接受环保行政部门检查指导;
- 2) 依据环境调查与风险评估报告书及其专家评审意见、修复技术方案及其专家评审意见等文件的有关要求,制定施工期环境监理方案;
 - 3)负责监督项目施工过程中是否全面落实了修复技术文件的要求:
 - 4)负责项目施工期间污染防治设施、生态建设与保护措施的实施与进度;
- 5)对施工期间的环境质量、污染物排放是否符合国家和地方规定的标准进行检查监督:
- 6) 施工正式开始前对项目的施工期污染防治措施进行检查,确定是否按要求进行施工期污染防治:

- 7)对施工期污染物排放状况进行检查,检查设施是否正常运行,通过定期监测分析污染物排放是否达标,将对周围环境的影响降至最低:
- 8) 协助项目部组织专家及政府部门、安检人员定期或不定期进行环境保护检查监督,并形成监理日志:
- 9)对施工作业全过程进行环境保护检查与监督,当发现污染问题时,应立即督促落实整改;
 - 10) 主持或组织常规环境监理工地会议、编写会议纪要:
 - 11)编写管辖范围内的环境监理报告,提供相应的报告及资料;
 - 12) 严格履行投标文件的承诺,并每周对现场进行检查:
 - 13) 配合土地使用权人完成项目最终效果评估评审和备案工作。

3.5.2 项目实施期间的环境监理

3.5.2.1 施工准备阶段环境监理

- (1) 组建项目监理机构
- (2)参加施工组织交底
- (3) 建立环境监理工作方案和制度
- (4) 开工条件的审核
- (4) 核查平面布置
- (5) 临建设施建设

3.5.2.2 施工阶段环境监理

- (1) 清挖范围复核
- 1) 清挖范围测量放线环境监理

本项目于 2024 年 9 月 15 日开始对厂区污染区域进行布点、放线测量工作,以便 对原地面标高及污染土壤清挖后的基坑标高进行测量。分层开挖或修复污染土壤时及 时跟踪测量,挖掘机每后退一次,坑底高程就测量一次,及时纠正坑底高程。

进场后, 监理单位对现场修复范围拐点坐标进行了复核与确认。

表 5.2.1.1-1 第一阶段修复区域拐点及高程测量时间表

类别	施工内容	开挖前测量时间	开挖完成测量时间
	R1-4	2024.09.15	2024.09.16
	R2-2	2024.09.25	2024.09.30
	R2-1-1	2024.09.25	2024.09.30
污染土	R2-3	2024.09.24	2024.09.30
	R3-1-1	2024.10.11	2024.10.14
	R4-3	2024.10.19	2024.10.28
	R5-3	2024.10.28	2024.10.31
	ys1-2-1	2024.09.27	2024.09.28
疑似污染土	ys1-4-1	2024.10.10	2024.10.11
	ys1-4-2	2024.10.10	2024.10.11
	ys1-6-1	2024.10.23	2024.10.24
	hj1-1-1	2024.09.26	2024.09.27
环境管理土	hj1-2-1	2024.09.27	2024.09.28
	hj1-3-1	2024.10.09	2024.10.10
疑似环境管理土	yhj1-2-1	2024.09.27	2024.09.28
双似小 児目垤丄	yhj1-2-1	2024.09.27	2024.09.28
疑似污染土土堆	疑似污染土堆 1	2024.10.29	2024.10.29
疑似环境管理土	疑似环境管理土堆1	2024.10.29	2024.10.29

2) 基坑开挖报审资料审核

基坑开挖前施工单位报送相关测量放线资料,经过项目监理部现场确认无后方可进行开挖,开挖完成后报送报验资料,项目监理部确认无误后方可申请效果评估采样。具体报审报验情况见表 3.5-2。

表 3.5-2 测量资料详情表

序号	名称	编号	审批日期
1	R1-4 开挖前	开挖前-01	2024.09.15
2	R1-4 开挖后	开挖后-01	2024.09.16

3	R2-2 开挖前	开挖前-02	2024.09.25
4	R2-2 开挖后	开挖后-02	2024.09.30
5	R2-1-1 开挖前	开挖前-03	2024.09.25
6	R2-1-1 开挖后	开挖后-03	2024.09.30
7	R2-3 开挖前	开挖前-04	2024.09.24
8	R2-3 开挖后	开挖后-04	2024.09.30
9	R3-1-1 开挖前	开挖前-05	2024.10.11
10	R3-1-1 开挖后	开挖后-05	2024.10.14
11	R4-3 开挖前	开挖前-06	2024.10.19
12	R4-3 开挖后	开挖后-06	2024.10.28
13	R5-3 开挖前	开挖前-07	2024.10.28
14	R5-3 开挖后	开挖后-07	2024.10.31

各基坑开挖前后坐标及高程情况如下表所示, 经项目监理部复核开挖范围与修复 方案和风评报告中所述范围基本一致。

(2) 清挖过程环境监理

清挖过程监理部监理人员通过巡视、旁站核实单位施工均按照报审材料清挖;清 挖过程遗撒均有及时清理;清挖过程采取了防扬尘措施等措施;施工过程中我司环境 监测数据均显示颗粒物和其他特征指标均在标准范围以下,开挖过程符合规范和方案 要求,对周边环境影响可接受。具体清挖过程资料与影像见图 3.5-3。

3.5.2.3 场内运输过程环境监理

经监理单位现场核实,施工单位土壤运输过程中采用符合环保要求的运输车辆,运输车辆的尾气排放标准达到广州市渣土运输车辆的要求。运输车辆需严格听从现场指挥人员的指挥,根据施工挖掘机固定运输车辆,固定运输路线的原则按规定路线行驶。行驶路线与设计路线基本一致。

3.5.2.4 预处理过程环境监理

施工单位为了保证后续外运过程避免出现跑冒滴漏的现像和水泥窑协同处置的要求,需要在进料棚中对其进行预处理。预处理的主要目的是控制含水率,避免造成二

次污染,去除渣块、垃圾等杂质影响修复效果、损坏设备。预处理过程中挥发出的污染气体通过大棚内设置的引风系统导入尾气处理系统处理,达标后排放。

施工单位处理过程中所有预处理环节均在密闭式处理棚中进行,处理棚尾端加设污染物收集单元设施,用以保护大棚内作业人员健康,避免粉尘无组织排放对周边环境造成污染。

挥发出的废气经抽气系统集中收集并输送至由布袋除尘组成的尾气处理系统,进入布袋除尘器除尘收集颗粒物,处理达标后经风机抽排至排气筒排放。我司对尾气进行环境监理,结果均满足排放要求。

3.5.2.5 外运处置环境监理

第一阶段基坑的污染土已经完成了筛分预处理工作。因此,施工单位将这部分修 复后的土壤已外运至水泥窑协同处置。

项目第一阶段污染区域共清挖污染土壤 5094.8m³(实方),扣除筛分筛上物 491m³(实方),筛下污染土壤 4603.3m³(实方)。清挖灌注桩土 1271.4m³(实方),扣除筛分筛上物 17m³(实方)后,筛下污染土壤 1254.4 m³(实方)。废水处 理设施/沉淀池底泥 8.8m³。

污染土壤和灌注桩土全部外运至水泥窑协同处置单位——广东清远广英水泥有限公司和阳春海螺水泥有限责任公司。广东清远广英水泥有限公司和阳春海螺水泥有限 责任公司自 2024年9月28日至2024年11月3日接收广州市木材公司地块土壤污染修 复项目的污染土壤,合计9926.58吨。

外运处置土壤为固废土壤,采用可覆盖式运输车,对污染土壤进行运输,防止运输过程中异味、扬尘进入大气环境中造成污染及土壤遗撒。项目地块内设置了车辆冲洗区,所有运输车辆进出场区前均清洗干净。外运全过程流程如下:

① 外运车辆进场后进行空车检查并过磅称重和记录;

- ② 外运车辆进入预处理大棚进行污染土装车;
- ③ 装车后车辆过磅称重并进入车辆冲洗区进行冲洗;
- ④ 检查完成后车辆出场,并按设计路线运输;
- ⑤ 到达水泥窑后进行过磅称重并记录;
- ⑥ 进入水泥窑污染土暂存场、卸车,外运完毕。

监理单位在污染土外运过程中通过跟车和复核 GPS 路线图的方式进行场外监理, 未发现异常。

3.5.2.6 危险废物开挖完成情况监理

(1) 清挖过程监理

本项目存在被鉴别为危险废物的污染土壤,修复单位按照危险废物的相关法规、标准与规范于 2024 年 10 月 23 日-11 月 3 日,完成危险废物进行清挖和外运工作,危险废物运输单位为珠海市粤隆运输有限公司,处置单位为韶关东江环保再生资源发展有限公司,危险废物按"含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质(HW900-041-49)"进行处置,处置方式为安全填埋。

清挖过程监理部监理人员通过巡视、旁站核实单位施工均按照报审材料清挖;清 挖过程遗撒均有及时清理;清挖过程采取使用吨袋和塑料袋双层防护对危险废物进行 收集并贴危险废物标签;开挖过程符合规范和方案要求。

危险废物转运过程监理部监理人员通过巡视、旁站核实单位施工出场的危险废物 的去向以及重量,转运的危险废物每个吨袋均张贴危险废物标签,转运过程未造成二 次污染。

(2) 效果评估评估阶段监理

危废基坑完成清挖后,本项目的效果评估单位广东中加检测技术股份有限公司委 托广州竞轩环保科技有限公司对危险废物清挖完成情况进行验收,于 2024 年 11 月 18 日,项目委托单位广东中加检测技术股份有限公司组织召开了《广州市木材公司地块 危险废物土壤清挖完成情况验收报告》(以下称《报告》)专家评审会,会议邀请 3 名专 家组成专家组(名单附后)对《报告》开展技术评审,评审结果为通过。《报告》的结论 如下:

"广州市木材公司地块危险废物清挖完成情况验收工作参照《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、《建设用地土壤污染修复效果评估监测质量控制技术规范》(DB44/T 2417-2023)、《危险废物鉴别技术规范》(HJ 298-2019)等要求进行,分别从浸出毒性、毒性物质含量进行检测分析,并进行相应的采样和检测分析,结果表明,5个基坑(6个危废区域)检测结果均未超出相应的标准限值。结合现场勘查、资料分析及检测结果进行综合判定,判定结果为:广州市木材公司地块危险废物清挖后遗留的基坑污染土壤不具有危险特性,不属于危险废物,本次危废清挖已到位,无需继续扩大范围进行清挖。

危险废物土壤清挖完成情况验收报告专家评审会意见如下图。

综上,《广州市木材公司地块待修复污染土壤危险特性鉴别报告》中判定的危险废物已全部按'含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质(900-041-49)'完成转运,地块内已无积存的危险废物。"

3.5.2.7 止水帷幕和基坑支护环境监理

根据《广州市木材公司地块土壤污染修复项目基坑支护工程》设计图纸和修复方 案》,搅拌桩施工和灌注桩施工严格控制施工过程,避免偏离坐标施工。根据《修复方 案》,本项目施打灌注桩时的灌注桩土按污染土进行处理。

3.5.2.7 止水帷幕和基坑支护环境监理

根据《广州市木材公司地块土壤污染修复项目基坑支护工程》设计图纸和修复方 案》,搅拌桩施工和灌注桩施工严格控制施工过程,避免偏离坐标施工。根据《修复方 案》,本项目施打灌注桩时的灌注桩土按污染土进行处理。

3.5.2.8 修复效果评估过程环境监理

(1) 修复效果评估过程环境监理

根据修复效果评估采样方案,对第一阶段的每个基坑侧壁、每个基坑底部、疑似污染土、疑似环境管理土效果评估单位采样过程中进行旁站。

(2) 筛上物环境监理抽检

根据《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(修订版)》的要求:"修复过程中涉及对筛上物附着污染土壤进行洗脱处理,如残留污染土壤量较多(每 100 m³ 附着的土壤量大于或等于 100 kg,筛上物附着土壤量由环境监理单位抽样计量估算、效果评估单位审核确认),宜将筛上物附着的土壤纳入效果评估。"

修复施工单位完成第一阶段的筛上物完成冲洗后,项目环境监理单位在效果评估单位见证对筛上物的附着物量进行抽查,抽查结果见下表:

 序号
 样品代表体积(m3)
 筛上物附着土壤称量结果 (kg)
 每 100m3 筛上物附着的土壤量 结果(kg)

 1
 215
 140
 64.2

表 5.3.2-1 筛上物的附着物量抽样记录表

3.5.3 二次污染防治措施环境监理

3.5.3.1 大气环境污染防范措施

(1) 污染土壤清挖环节

在污染土壤的清挖过程中,对于异味和粉尘类的废气二次污染采用以下措施。

基坑清挖时,开挖过程出现异味和扬尘,即时采用雾炮喷洒施工作业面,围墙喷淋及时打开,控制开挖产生的扬尘等废气污染。

(2) 污染土壤运输环节

污染土壤的运输过程中,可能会造成扬尘类的废气二次污染。本项目将采用车辆 密闭运输,道路洒水车洒水等措施进行废气和粉尘的二次污染防治。 污染土壤在外运的过程中,保持车辆密闭,防止扬尘等废气逸散。车辆出厂区时, 经过洗车平台清洗,防止土壤的二次污染。外运全过程动态跟车,保持动态监测。

(3)污染土壤暂存环节

土壤暂存过程主要为现场污染土、疑似污染土暂存、环境管理土、疑似环境管理 土、建筑垃圾暂存,暂存过程可能导致大气扬尘污染,针对项目实施过程中的土壤暂存过程,主要采取棚内暂存、苫盖防雨布、苫盖绿网等二次污染防治措施。

(4) 污染土壤预处理施工环节

土壤预处理过程主要为现场污染土,预处理过程可能导致大气扬尘污染,针对项目实施过程中的土壤预处理过程,主要采取棚内筛分预处理,使用尾气处理设备进行降尘和废气处理等二次污染防治措施,通过第三方检测单位对尾气处理效果进行采样检测。

3.5.3.2 水环境污染防范措施

(1) 基坑涌水、降水等二次污染防治

污染土壤区域开挖前,修复施工单位根据《广州市木材公司地块土壤污染修复项目基坑支护工程》的设计图纸,本项目基坑止水帷幕的工程布置如下:

- ①在基坑的东侧,分别采用以下形式的搅拌桩作为止水帷幕: ϕ 600@450, 桩长8m 的搅拌桩。
- ②在基坑的南侧、西侧,分别采用以下形式的搅拌桩作为止水帷幕: Φ 600@450,桩长 8m 的搅拌桩; Φ 600@450,桩长 8.5m 的搅拌桩; Φ 600@450,桩长 9m 的搅拌桩; 双排高压旋喷柱 Φ 600@450 桩长 7m。
- ③在基坑的北侧,分别采用以下形式的搅拌桩作为止水帷幕: Φ 600@450,桩长 6m 的搅拌桩。

污染场地修复施工过程中,对基坑涌水和基坑内雨水采取抽出处理等防治措施。

并在基坑周围设置挡水墙和排水沟,减少雨水流入。

基坑开挖过程中,施工单位安装临时泵对开挖过程中的基坑渗水进行抽排,临时泵安装在基坑最后开挖位置的低位,防止基坑积水,抽出的基坑积水抽排至废水处理系统处理。

(2) 筛上物冲洗过程二次污染防治

筛上物主要来自第一阶段污染区域 0-5m 筛分减量后产生的建筑垃圾和碎石等渣块。 为了避免筛上物冲洗过程造成水环境的二次污染,所有筛上物在三级沉淀池旁的筛分 减量冲洗区域进行冲洗,冲洗废水收集在三级沉淀池内,沉淀池废水抽至废水处理设 备。

洗车废水主要来自第一阶段污染区域 0-5m 污染土外运车辆出场前清洗,所有清洗的车辆均在洗车区进行清洗,冲洗废水收集在三级沉淀池内,沉淀池废水抽至废水处理设备。

(3) 水体暂存池二次污染防治

基坑涌水、洗车废水、筛上物冲洗废水抽运至水处理设备进行修复后暂存,本项目设置2个暂存清水池,1个调节池。

3.5.3.3 噪声环境污染防范措施

根据噪声环境影响分析,施工现场的噪声来源主要包括机械设备噪声及现场施工 人员的噪声等。针对这两种类别的噪声二次污染防护技术装备及保证措施如下所示:

(1) 机械、设备噪声

在土壤开挖、运输过程中,将会用到一些高噪声的机械设备,采用的技术装备包括低噪声机械、检修机械、润滑剂、噪声自动监测仪等。

1) 采用噪声小的生产设备

在场地平整、土壤清挖、土壤运输及修复等过程中选用机器噪声小的生产设备及 部件,并要认真执行设备的技术标准,严格控制机械噪声。

2)设备加装消声、减震装置

场地清挖机械、封闭式运输车辆设备等高噪声设备采取在发动机上加装隔声装置 及加装消声器的措施来降低施工机械噪声。施工人员及时维修、管理高噪音的器具设 备,使设备处于低噪声,良好运行状态。

3) 管理措施

施工人员及时维修、管理高噪音的器具设备,使设备处于低噪声,良好运行状态。

4)禁止厂界内鸣笛

在修复施工过程和运输过程,禁止挖机、车辆等机械在场界内鸣笛,车辆噪声可 采取保持技术状态完好和适当减低速度的方法进行控制。

(2) 施工人员的噪声

在污染场区要大力提倡文明施工,建立健全控制人为噪声的管理制度,加强对施工人员的噪声扰民的教育,尽量减少人为的大声喧哗,增强全体施工人员避免噪声扰民的自觉意识。

另外, 合理安排强噪声的作业时间, 尽量控制施工时间。

(3) 施工作业时间

现场合理安排施工作业时间,尽量避免夜间施工,如必须进行夜间施工,需要对外公示施工情况,并选择施工过程噪声较小的工序,避免对周边产生噪声影响,施工设备全部采用合格合规设备,且必要时采取有针对性的减噪措施。

(4) 噪声自检测

我单位安排人员在施工期间对场地周边进行噪声监测,一旦发现异常,及时和现场施工人员沟通,采取措施控制噪声。

3.5.3.4 固体废弃物污染防范措施

(1) 废水修复过程产生的沉淀

废水处理设施/沉淀池底泥为废水处理设施、洗车区沉淀池、洗石区沉淀池的底泥。 根据《修复方案》,现场废水处理设施、洗车区沉淀池、洗石区沉淀池的底泥按照污染 土进行水泥窑协同处置,第一阶段的底泥共产生量为8.8m³,均外运至水泥窑进场处置。

(2) 建筑垃圾

- 1) 施工清理出的建筑垃圾等杂物要临时贮存,并分类处置;
- 2)施工现场设立专门的废弃物临时贮存场地,废弃物分类存放,设置安全防范措施且有醒目标志;
 - 3) 建筑垃圾表面若存在泥土过多,则进行削铲后,重新冲洗;
 - 4)禁止在工地焚烧残留的废物或将废物随意堆放;
- 5)废弃物的运输确保不遗撒、不混放、送到政府批准的单位或场所进行处理、消纳:
 - 6)对可回收的废弃物做到再回收利用。

(3) 生活垃圾

针对生活垃圾,现场布置垃圾桶,之后垃圾装袋集中堆放,加强消毒处理,注意 灭鼠、灭蚊、防臭,定期运至环卫部门指定地点,由环卫部门及时清运妥善处理。

3.6 地块环境监测情况

3.6.1 大气监测

3.6.1.1 无组织废气监测

参照《大气污染物无组织排放监测技术导则》(HJ/T 55-2000)的要求,以及《大气污染物排放限值》(DB44/27-2001)规定,在本项目场地周界外设置无组织排放监测点。

(1) 采样布点

根据《大气污染物无组织排放监测技术导则》(HJ/T55-2000)的要求,需在场地 边界设置监控点。结合场地大小、气象、风向因素等综合考虑,边界外 1m 设置监测点 位,监测点位在场地四周各设置1个,共计4个采样点位。

(2) 采样过程

第三方采样监测过程照片如下:

(3) 无组织废气监测结果

根据 5 次监测结果,施工期间地块对周边环境影响在可接受范围内,具体监测结果如下:

表 3.6-1 厂界大气无组织排放监测结果

采样 时间	点位	总悬浮 颗粒物	砷	铅	非甲烷总 烃	乙苯
3	评价标准	1.0	0.010	0.0060	4.0	
	单位	mg/m ³	mg/ m ³	mg/ m ³	mg/ m ³	mg/ m ³
	地块上风向(G1)	0.085	ND	2.27×10 ⁻⁵	2.50	ND
2024.9.14	地块下风向(G2)	0.111	ND	2.86×10^{-5}	3.57	ND
2024.9.14	地块下风向(G3)	0.120	ND	3.64×10 ⁻⁵	3.66	ND
	地块下风向(G4)	0.197	ND	3.60×10^{-5}	3.51	ND
	地块上风向(G1)	0.088	ND	/	2.30	/
2024.9.28	地块下风向(G2)	0.120	ND	/	3.61	/
2024.9.28	地块下风向(G3)	0.118	ND	/	3.60	/
	地块下风向(G4)	0.266	1.12×10^{-5}	/	3.42	/
	地块上风向(G1)	0.072	ND	/	1.54	/
2024.10.14	地块下风向(G2)	0.153	ND	/	2.68	/
2024.10.14	地块下风向(G3)	0.345	ND	/	2.89	/
	地块下风向(G4)	0.233	ND	/	3.68	/
	地块上风向(G1)	0.102	ND	/	/	/
2024.10.30	地块下风向(G2)	0.117	ND	/	/	/
2024.10.30	地块下风向(G3)	0.140	1.26×10^{-5}	/	/	/
	地块下风向(G4)	0.238	ND	/	/	/
	地块上风向(G1)	0.107	4.33×10 ⁻⁵	7.89×10 ⁻⁵	1.31	ND
2024.11.14	地块下风向(G2)	0.226	5.08×10 ⁻⁵	1.0×10 ⁻⁴	2.19	ND
	地块下风向(G3)	0.241	4.33×10 ⁻⁵	8.39×10 ⁻⁵	2.30	ND
	地块下风向(G4)	0.191	4.57×10 ⁻⁵	9.33×10 ⁻⁵	2.30	ND
注:ND表示	未检出,/表示未检测;					

(4) 综合评价

第一阶段开挖的环境管理土,石油烃(C₁₀-C₄₀)环境管理深度为 0-1.5m; 根据厂界周边 5 次的监测采样结果,监测结果未超出《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值,第一阶段施工对周边环境的影响在可接受范围内。

3.6.1.2 敏感点环境空气监测

参照《大气污染物无组织排放监测技术导则》(HJ/T 55-2000)的要求,以及《环境空气质量标准》(GB3095-2012)二级标准规定,在本项目地块周界外设置敏感点监测点。

(1) 采样位置

根据地块环境敏感保护目标分布情况,选择有代表性的环境敏感点设置大气监测点,共布置2个监测点位,详细敏感点位布点如图所示。

(2) 采样过程

根据 5 次监测结果,施工期间地块对周边环境影响在可接受范围内,具体监测结果如下:

采样时间	点位	总悬浮颗 粒物	PM10	PM2.5	砷	铅	非甲烷 总烃	乙苯
<u>:</u>	评价标准	300	0.15	0.075	对比	对比	2.0	对比
	单位	μg/m³	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	mg/m³
2024.9.14	广东海警局(M1)	72	0.04	0.032	ND	1.86×10^{-5}	0.93	ND
2024.9.14	西湖社区(M2)	61	0.036	0.028	ND	1.24×10^{-5}	0.94	ND
2024.9.29	广东海警局(M1)	78	0.054	0.039	ND	/	0.095	/
2024.9.29	西湖社区(M2)	57	0.034	0.026	ND	/	0.93	/
2024.10.14	广东海警局(M1)	85	0.063	0.043	ND	/	0.92	/
2024.10.14	西湖社区(M2)	66	0.046	0.032	ND	/	0.95	/
2024 10 20	广东海警局(M1)	75	0.050	0.034	ND	/	/	/
2024.10.29	西湖社区(M2)	73	0.043	0.024	ND	/	/	/
2024.11.14	广东海警局(M1)	78	0.031	0.022	ND	1.79×10^{-5}	0.87	ND
	西湖社区(M2)	106	0.057	0.032	ND	6.35×10^{-5}	0.84	ND
注:ND表示	未检出,/表示未检测	;			•			

表 3.6-2 敏感点空气监测结果

(4) 综合评价

第一阶段开挖的环境管理土,石油烃(C₁₀-C₄₀)环境管理深度为 0-1.5m; 根据环境 敏感点 5次的监测采样结果,特种污染物砷在施工过程中监测均未检出; 环境管理土中 铅在施工前和施工中监测均有不同程度的检出; 总悬浮颗粒物、PM10、PM2.5 监测结果均未超出《环境空气质量标准》(GB3095-2012)二级标准; 非甲烷总烃监测结果均未超出《环境空气质量非甲烷总烃限值》(DB13/1577-2012); 环境管理土中的乙苯施工前和施工中监测均未检出; 西湖社区位于项目的西北测,且监测期间的风向为北风;铅和乙苯属于第二阶段开挖的环境管理土中的指标; 根据监测结果,第一阶段施工对周边环境的影响在可接受范围内。

3.6.1.3 有组织废气监测

(1) 监测布点

本项目设置密闭大棚并配备一个尾气处理设备,烟囱高度 15m。污染土壤预处理的尾气通过烟囱排放,属于有组织排放。

(2) 采样过程

具体采样过程如下图所示:

(3) 有组织废气监测结果

采样时间 点位 颗粒物 砷 非甲烷总烃 铅 乙苯 评价标准 120 1.5 120 0.7 单位 mg/m^3 mg/m^3 mg/m³ mg/m^3 mg/m^3 2024.09.28 2.6 ND QG1 3.73 2024.10.14 < 20ND 5.07 QG1 / 2024.10.30 OG1 1.8 ND 注: ND 表示未检出,/表示未检测。

表 3.6-3 有组织废气监测结果

(4) 综合评价

第一阶段开挖的环境管理土,石油烃(C₁₀-C₄₀)环境管理深度为 0-1.5m; 根据《大

气污染物排放限值》(DB44/27-2001)第二时段二级有组织排放监控浓度限值,第一阶段 3次有组织排放采样指标监测结果符合排放要求,对周边环境的影响在可接受范围内。

3.6.2 噪声监测

(1) 监测布点

在施工过程中,机械作业产生的噪声需定期进行监测。测量时应选择无雨、无雪、风力 6 级以下的气候。噪声的监测方法按照《建筑施工场界环境噪声排放标准》(GB 12523-2011)。噪声监测应根据施工场地周围噪声敏感建筑物位置和声源位置的布局,测点应设在对噪声敏感建筑物影响较大、距离较近的位置。每个采样点一般情况测点设在建筑施工场界外 1m,位置设在高度 1.2m 以上的噪声敏感处。

(2) 采样过程

(3) 监测结果

本阶段共进行 2 次噪声监测,其中施工前昼间北面,夜间东面和北面噪声超标; 2024 年 10 月 30 日施工过程东面和北面噪声超标,经过排查,项目该时间段施工机械 暂未启动,是由于该时间段黄埔大道东和环城高速出入口车辆增多,;整体施工期间噪 声对周边环境影响在可接受范围内,具体监测数据如下:

采样时间	点位	昼间	夜间
	评价标准	70	55
	单位	dB	dB
	地块东边界外 1m 处 N1	68	68
2024.9.14	地块南边界外 1m 处 N2	59	53
2024.9.14	地块西边界外 1m 处 N3	62	55
	地块北边界外 1m 处 N4	75	76
	地块东边界外 1m 处 N1	66	64
2024 10 20	地块南边界外 1m 处 N2	60	54
2024.10.30	地块西边界外 1m 处 N3	59	53
	地块北边界外 1m 处 N4	69	64

表 3.6-4 厂界噪声监测结果

表 3.6-5 环境敏感点噪声监测结果

采样时间	点位	昼间	夜间
	评价标准	60	50

	单位	dB	dB
2024.9.14	广东海警局(NM1)	59	48
2024.10.30	广东海警局(NM1)	59	48

(4) 综合评价结果

根据 2 次噪声监测,厂界西边和南边符合《建筑施工场界环境噪声排放标准》(GB12523-2011),但存在东面和北面厂界噪声超出《《建筑施工场界环境噪声排放标准》(GB12523-2011),监理部核实当天施工情况,施工单位在晚上外运施工,施工机械仅一台挖机使用,外运车辆晚上均未鸣笛,车速控制在 15km/h,根据现场在线噪声监测,现场晚上未施工,夜间噪声亦超标;厂界北边黄埔大道,东边为环城高速,夜间易出入口堵车所导致夜间噪声超标。

环境敏感点广东海警局监测结果与背景值无显著的差异,符合《声环境质量标准》 (GB3096-2008)执行2类标准限值要求。

3.6.3 废水监测

(1) 监测布点

生产废水包括污染基坑内的积水、洗车废水及筛上物冲洗废水等,水处理后排入暂 存池暂存,因此每批次检测1个样品,检测合格水体排放至污水管网。

(2) 废水采样过程

(3) 采样监测结果

化学需 五日生化 悬浮物 采样时间 点位 PH 氨氮 石油类 砷 氧量 需氧量 评价标准 6.5≤PH≤9.0 400 500 300 45 15 0.3 单位 无量纲 mg//L mg/L mg/L μg/L mg/L mg/L 2024.9.28 W16.8 5 8 1.8 0.118 ND 0.0160 2024.10.30 W2 7.4 9 16 4.6 0.345 0.84 0.0196 2024.11.14 W1 7.8 8 20 5.6 5.64 ND 0.0166

表 3.6-6 废水采样分析结果

(4) 综合评价结果

根据 3 次废水监测结果,检测污染物均满足《水污染排放限值》(DB44/26-2001)

第二时段三级排放标准和《污水排入城镇下水道水质标准》(GBT31962-2015) B级标准的较严值,因此本阶段施工过程对周围环境影响在可接受范围内。

3.6.3 地下水监测

(1) 地下水采样位置

具体的点位布设情况如下图表所示,地下水监测井位置布设如下图所示:

(2) 采样过程

具体采样过程如下所示:

(3) 采样结果

可萃取性石油烃 采样时间 点位 PH 砷 铅 乙苯 $(C_{10}-C_{40})$ 评价标准 5.5≤PH≤9.0 0.050 0.10 1.8 600 单位 无量纲 mg/L mg/L mg/L μg/L (GW1)0.0653 0.12 7.3 ND ND 7.4 0.06 (GW2) 0.0147 ND ND 2024.9.14 (GW3) 7.4 0.0926 ND 0.07 ND 7.3 (GW4) 0.10 NDND ND (GW1) 7.1 0.08 0.0672 ND ND (GW2) 7.5 4.5×10^{-3} 0.06 ND ND 2024.11.14 (GW3) 7.3 0.0713 0.06 ND ND (GW4) 7.4 1.0×10^{-3} ND 0.07 ND

表 3.6-7 地下水监测结果

(4) 综合评价结果

根据 2 次地下水监测结果,GW1 和 GW3 利用场地调查的原有水井,该点位背景值超《地下水质量标准》(GB/T14848-2017) IV类标准,检测污染物无显著性差异,因此本阶段施工过程对地下水影响在可接受范围内。

4 场地概念模型

4.1 资料回顾

4.1.1 资料回顾清单

我司自承担该污染场地土壤修复效果评估工作后,立即组织相关技术人员开展 该场地相关资料的收集工作,主要包括如下几个方面:

- (1) 场地环境调查评价及修复方案相关文件:场地环境调查及风险评估报告及审批意见、经环保主管部门审查备案的《修复方案》、《监理方案》以及有关行政文件。
- (2)场地修复工程资料:清挖污染土壤位置与范围、污染土壤运输路线、污染土壤处置工艺等。
- (3)修复实施相关文件及记录:修复实施过程的记录文件(如污染土壤清挖和运输清单和接收函件)、修复设施运行记录、环境质量和二次污染排放监测记录、修复工程施工总结报告等。
 - (4) 监理文件:环境监理报告。
- (5) 其它文件:环境管理组织机构、相关合同协议(如委托处理污染土壤的相关文件和合同)、修复过程的原始记录等。
- (6) 相关图件:场地地理位置示意图、场地用地规划图、总平面布置图、修复范围图、修复技术路线图、修复过程照片和影像记录等。

4.1.2 资料回顾要点

对上述收集的资料进行整理和分析,并通过与现场负责人、修复实施人员、监理人员等相关人员进行访谈,明确核实以下内容:

(1)通过审查修复工程实施方和监理单位提供的文件,核实判定修复实施过程的场地目标污染物、修复范围和修复工程量,与场地环境调查与风险评估报告、修

复修复方案及备案文件是否一致。

- (2)通过审查场地修复过程的监理记录和监测数据,核实修复工艺及修复过程 污染防治措施的落实情况。
 - (3) 通过审查相关运输清单和接收函件,核实污染土壤的数量和去向。

4.1.2.2 修复范围审核结果

通过核实修复单位和监理单位提供的文件,项目分两个阶段进行修复工作,第一阶段修复区域包括 R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3,其中 R2-1-1、R3-1-1 分别为 R2-1、R3-1 的部分区域,剩余部分区域 R2-1-2、R3-1-2 在第二阶段期间进行修复。

修复单位主要依据《修复方案》给出的拐点坐标位置,利用全站仪、水准仪分 别测放出基坑的各层坐标拐点,确定第一阶段污染区坑底(修复范围)以及所开挖 边界,再用白灰撒出开挖的边界线(比修复范围稍大),最终开挖完成后核实坑底的 修复范围边界。

4.1.2.2 修复场地的目标污染物及修复目标审核结果

《风评报告》于 2021年 11 月通过广州市环境技术中心主持召开的专家咨询论证会。通过核实修复单位和监理提供的文件,项目第一阶段实施过程与《风评报告》及备案的《修复方案》中修复目标污染物及修复目标值一致。

4.1.2.3 修复工程量审核结果

通过核实修复单位和环境监理单位提供的文件,第一阶段污染区清挖工作从 2024年9月16日开始,于2024年10月30日清挖完毕。

第一阶段土壤开挖污染土方量约 5094.8m³,,污染土清挖工程量统计见表 4.1-3, 筛上物工程量统计见表 4.1-4,疑似污染土清挖工程量统计见表 4.1-5。

阶	段 & 深 度	区域	方案面 积(m²)	方案方量 (实方) (m³)	开挖后报验 量(实方) (m³)	实方方 量差值 (m³)	虚方量 (m³)	开挖时间
	0-1.0	R1-4	230	230	243.4	13.4	310	2024.9.16
		R2-1-1	227	227	246.8	19.8	290	2024.9.28
	1.0-2.0	R2-2	230	230	238.4	8.4	290	2024.9.28- 2024.9.29
_		R2-3	621	621	639.3	18.3	760	2024.9.25- 2024.9.27
阶 段	2.0-3.0	R3-1-1	1303	1303	1360.5	57.5	1610	2024.10.11- 2024.10.14
	3.0-4.0	R4-3	1477	1477	1536.1	59.1	1800	2024.10.16- 2024.10.17、 2024.10.22- 2024.10.25
	4.0-5.0	R5-3	796	796	830.3	34.3	980	2024.11.1
	灌注桩土		/	/	1271.43	/	1600	2024.9.15、 2024.10.2- 2024.10.4
废刀	废水处理设施/沉淀池 底泥		/	/	8.8	/	/	/
	小计		4884	4884	6375	210.8	1	/

表 4.1-3 污染土清挖工程量统计表

④废水处理设施/沉淀池底泥为废水处理设施、洗车区沉淀池、洗石区沉淀池的底泥,按实方量=斗车数 $\times 0.2 m^3/$ 车。

阶.	段&深度	区域 污染土体积 (实方 m³)		筛上物虚方量 (m³)	筛上物实方数 量(m³)	筛上物率 (%)
	0-1.0m	R1-4	243.4	40	33	13.7
阶	1 0 2 0	R2-1-1	246.8	200	167	14.0
段	1.0-2.0m	2.0m R2-2 R2-3 238.4	238.4	200	167	14.8

表 3.4-4 筛上物工程量统计表

备注: ①表内所示方量均未减去筛分出筛上物的量;

②实方量=基坑面积×开挖深度,虚方量=运输车数×10m³/车;

③本项目施打灌注桩时的灌注桩土按污染土进行处理;

阶	阶段&深度 区域		污染土体积 (实方 m³)	筛上物虚方量 (m³)	筛上物实方数 量(m³)	筛上物率(%)
			639.3			
	2.0-3.0m	R3-1-1	1360.5	160	133	9.8
	3.0-4.0m	R4-3	1536.1	150	125	8.1
	4.0-5.0m	R5-3	830.3	40	33	4.0
	R1-4 表	面混凝土	/	60	48③	/
	灌注桩土		1271.4	20	17	1.3
废水处理设施/沉淀池底泥		8.8	/	/	/	
小计		6375	670	556	/	

注: ①筛上物虚方=场内中转车数×10m³/车;

方案开挖方量 实际开挖方量 虚方量 区域名称 种类 (m^3) (m^3) (m^3) yhj1-2-1 疑似环境管理土 112.0 119.3 140 yhj1-2-2 疑似环境管理土 21.0 30.1 40 小计1 133.0 149.4 180 疑似污染土 ys1-2-1 286.5 291.0 350 ys1-4-1 疑似污染土 120.5 117.5 150 ys1-4-2 疑似污染土 99.0 98.0 120 疑似污染土 78.0 77.5 100 ys1-6-1 小计2 **584.0** 584.0 **720**

表 4.1-5 疑似污染土清挖工程量统计表

4.1.2.5 修复工艺及修复过程污染防治落实情况

通过核实修复单位和环境监理单位提供的文件,项目施工过程与备案中修复工 艺及修复过程污染防治落实情况如表 4.1-6 所示。

②筛上物实方量=筛上物虚方量/虚方系数,虚方系数取 1.2;

③该部分为 R1-4 的混凝土地面,厚度 0.2m,不属于污染层,但由于紧邻污染层,因此纳入到冲洗对象,数量为 $238.6 \times 0.2 \approx 48 m^3$ 。

备注: ①虚方量=运输车数×10m³/车;

②表中数据存在实际开挖方量小于方案开挖方量,原因存在2点:

a. 环境管理土清挖深度改变,原因在于该区域的起始标高较低,实际该层厚度较小,为保证日后污染土和疑似 污染土的开挖量,该层的厚度根据实际调整,调整以污染点的标高为依据;

b. 面积缩小,原因在于区域与污染土紧邻,污染土开挖后边界略大于设计的边界,导致的后续的开挖区域缩小。

表 4.1-6 修复工艺及修复过程污染防治落实情况对比

序号	项目	修复方案计划				实际施工情况		符合度
1	工程量		4884m³			5094.8m ³		超量 638.35m³
		区域	修复方量(m³)	深度 (m)	区域	修复方量(m³)	深度 (m)	
		R1-4	230	0-1	R1-4	243.4	0-1.01	
		R2-1-1	227	1-2	R2-1-1	246.8	1-2.02	
		R2-2	230	1-2	R2-2	238.4	1-2.01	基坑开挖面积与
2	修复范围	R2-3	621	1-2	R2-3	639.3	1-2.01	深度均有所增 大。
		R3-1-1	1303	2-3	R3-1-1	1360.5	2-3.01	
		R4-3	1477	3-4	R4-3	1536.1	3-4.02	
		R5-3	793	4-5	R5-3	830.3	4-5.02	
3	修复技术	1.土壤: 水泥窑协同 2.污水: 处理工艺采 淀"。		承、絮凝沉	1.土壤: 水泥窑 2.污水: 处理口	等协同处置; 二艺采用"调节+氧化+	絮凝沉淀"。	符合
4	平面布置	设置办公区、洗车区 2、疑似污染土堆场、 区、调节池、集水池 2、环境管理土堆场。	、洗石区、堆石区、 2、清洁土堆场 1、	污水处理	2、疑似污染土	先车区、污染土堆场 堆场、洗石区、堆石 集水池、清洁土堆场 堆场。	区、污水处理	符合
5	水污染防治措施	一体化污水处理设备	系统一套。		一体化污水处理	里设备系统一套。		符合

序号	项目	修复方案计划	实际施工情况	符合度
6	大气防治措施	(1) 在施工前对场地车辆行经路线铺设混凝土地面或钢板,设置足够的除尘喷雾设备; (2) 施工期间应做好施工机械的保养措施; 土壤直接装车,并做好覆盖工作除尘,车辆场内行驶速度不能超过 20km/h,施工过程开启喷雾设备; (3) 污染土壤筛分必须在污染土堆场的大棚内进行,合理安排堆土的筛分顺序,筛分过程中开启雾炮或尾气处理设施; (4) 在进行整堆作业前,可先对堆体适当洒水,增加表面土堆含水率,土壤堆置完毕后,采用防尘网/防水膜覆盖; (5) 施工过程产生的扬尘,使用雾炮进行快速有效降尘	(1) 在施工前对场地车辆主要行经路线混凝土硬化,设置足够的除尘喷雾设备,做好施工机械的保养措施; (2) 现场清挖的污染土壤直接装车,并在施工期间设置除尘喷雾设备,控制扬尘的产生; (3) 施工期间做好施工机械的保养措施,使用优质燃料,减少有毒、有害气体的排放量; (4) 所有运载污染土壤的车辆均须覆盖防护,且车厢四周完全密封,场内车速控制在 20km/h 以内,运输车辆行必须在硬底化道路上行驶、安排除尘喷雾设备进行定期作业,安排专人不定期洒水; (5) 车辆驶出场地前,必须进行冲洗,严格遵守车辆冲洗制度,不得带泥尘出场,污染土壤运至处置单位并进入指定仓库卸车后方能解除遮盖措施; (6) 在非施工区域铺设防尘网、采用防尘网/防水膜对土堆进行及时覆盖; (7) 场地周围围闭上安装喷雾装置,喷雾除尘,(8) 在施工作业期间,进行先洒水,使土壤一直保持适当湿润,清挖、筛分及土壤堆置等施工作业时喷雾洒水降尘。	符合
7	水防治措施	(1) 土壤清挖完成后,在清挖基坑的止水帷幕外 0.5m 处建设排水沟,并用防水膜将整个清挖区域覆 盖,降水产生的雨水经水泵抽排至室外雨水管网, 与污染土壤基坑接触的废水抽排至废水处理系统进 行集中处理; (2) 开挖过程中需要抽排基坑水以及开挖完成后止 水帷幕及坑底渗入的少量地下水及时收集并抽至废 水处理系统进行处理; (3) 污染土堆场设置大棚,地坪采用硬底化防渗, 周边做好围堰及排水设施,避免雨水与污染土堆接 触; (4) 运输及堆置作业在晴天进行,堆置完成后,对	(1)建设硬底化堆场和挡水墙,污染土壤堆场设施钢结构大棚,防止雨水进入和废水外泄; (2)洗石场与洗车区四周建设排水沟,排水沟与沉淀池相连,废水沉淀池上清液用泵抽至废水处理站调节池; (3)污染土壤清挖后基坑进行覆膜处理,隔离的雨水引导排放至室外雨水管网,与污染土壤基坑接触的废水抽排至废水处理系统进行集中处理; (4)土壤堆置完成后及时进行覆膜; (5)运输车辆离场前在洗车区域进行冲洗,冲洗废水经收集抽排至废水处理站进行处理。	符合

序号	项目	修复方案计划	实际施工情况	符合度
		裸露的土堆/渣块覆盖防水膜,堆场周边做好围堰及排水设施,做好场地中的雨水导排; (5)冲洗运输车辆形成的废水经洗车区四周集水沟收集后进入沉淀池预处理。		
8	噪声防治措施	(1)施工作业安排在白天进行,并尽量避免在中午或晚上期进行强噪声作业; (2)车辆出入场地期间,车辆禁鸣喇叭,避免扰民; (3)量减少人为的大声喧哗,增强全体施工人员防噪声扰民的自觉意; (4)施工过程中各类材料搬运及安装,要求做到轻拿轻放,卸料过程中尽量做到减缓速度和降低落差; (5)合理安排施工的顺序,减少多次重复无效的操作,减少施工噪声的持续时间;	(1)施工作业安排在白天进行,避免在中午或晚上期进行强噪声作业; (2)选用符合环保标准的施工机械、运输车辆,定期进行保养操作人员经过环保教育再上岗; (3)尽量减少人为的大声喧哗,严禁高声呼喊或以制造噪音的形式联系操作人员; (4)施工过程中各类材料搬运及安装,要求做到轻拿轻放,严禁抛掷或从运输车上一次性下料,减少噪声的产生; (5)运输路线尽量避开居民区,确实需经过居民区附近的,须控制车速,并禁鸣笛。	符合
9	固体废物防治 措施	(1) 废水处理系统调节池、混凝沉淀、砂滤、污泥浓缩单元等设备设施产生的污泥, 经简单脱水处理后与污染土壤外运水泥窑协同处; (2) 生活垃圾经分类收集后,由当地环卫部门统一外运作进一步处置。	(1) 废水处理过程产生的污染收集后与污染土壤一起运输至水泥窑协同处置; (2) 在工地现场建一个生活垃圾集中堆放点,生活垃圾由环卫单位定时清理;	符合

4.2 现场踏勘

(1) 核定修复范围

根据场地污染状况调查评估报告及修复方案中的钉桩资料或地理坐标等,结合 修复过程工程监理与环境监理出具的相关报告,确定场地修复范围和深度,核实修 复范围是否符合场地修复方案的要求。

(2)识别现场遗留污染对场地表层土壤及侧面裸露土壤状况、遗留物品等进行观察和判断,识别现场遗留污染痕迹。

效果评估监测实施阶段,监测工作人员采用专业现场记录表格、GPS 定位仪、摄/录像设备等手段,仔细观察、辨别、记录场地修复情况、周边重要环境状况及其疑似污染痕迹,并采用×射线荧光光谱仪(×RF)等野外便携式筛查仪器进行现场快速测量,辅助识别和判断场地土壤修复情况,并进行后续的现场监测采样工作。

场地土壤修复工程后续推进过程及修复效果评估监测过程中,将持续不间断地 对场地内修复工程进展情况、场地外周边环境及敏感点进行实时补充勘察,实时监 控修复工程。修复效果评估监测工作将紧密结合修复工程进度,并根据补充勘察的 实际情况进行动态调整采样进度及修复效果评估工作进程。

污染场地修复效果评估现场勘察主要包括核定修复范围和识别现场遗留污染痕迹。2024年7月至2024年11月,我司技术人员多次到污染土壤修复现场,勘察、核实了污染土壤的修复范围、修复工艺和方案、环保措施等内容。

勘查结果表明:

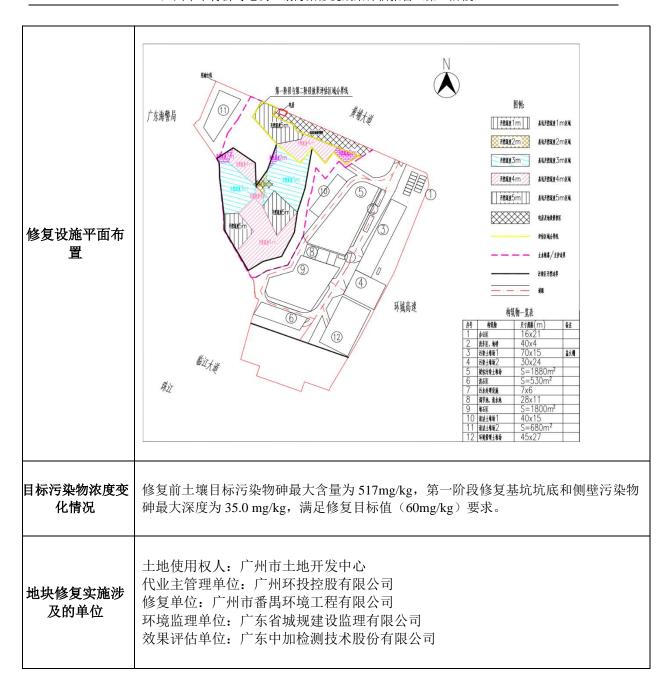
- (1) 对场地土壤状况、遗留物品等进行了观察和判断,未发现疑似有毒、有害 遗留污染物存在,修复范围内不存在明显的遗留污染;
 - (2) 污染土壤修复过程中无原、辅材料遗、撒造成的遗留污染问题;
 - (3) 未发现污染土壤修复过程产生的明显的二次污染痕迹。

4.3 人员访谈

对收集的资料进行整理和分析,并通过与现场负责人、修复实施人员、监理人员等相关人员进行访谈,访谈以下内容:

- 1) 根据场地环境评估报告、修复方案及备案文件等,确定场地的目标污染物、修复目标、修复范围和修复量,作为效果评估依据。
- 2)通过审查场地修复过程的监理记录和监测数据,核实修复方案和环保措施的 落实情况。
 - 3)通过审查相关运输清单和接收函件,核实污染土壤的数量和去向。

4.4 地块概念模型


4.4.1 地块概念模型涉及信息

地块概念模型涉及信息见表 4.1-1。

表 4.4-1 地块概念模型涉及信息

	<u></u>
地理位置	修复工程位于广州市天河区黄埔大道东 580 号
地块历史	广州市木材公司于 1958 年在地块上建立贮木场,主要从事原木的贮存,公司于 2000 年转制后,地块北部出租给广州安骅汽车贸易有限公司用作别克和雪佛兰的汽车 4S 店,从事汽车的销售、维修,地块南部则出租给私人做露天堆场,堆放原木和沙、砖、水泥等建筑材料。截至 2021 年 1 月,地块内企业、商铺已全部停产、搬迁完毕,地面建筑已全部拆除。根据该地块的规划信息,地块用地性质由工业用地变为文化设施用地和绿地。
地块调查评估	2020年9月至2021年12月,广东绿日环境科技有限公司完成对广州市木材
工作	公司地块开展场地环境调查及风险评估工作。
地块土层分布	地块地貌属珠江三角洲冲积平原,地形平坦。根据地质勘察和钻孔分析,地块地层结构扣除地表建筑碎石块,自上而下依次主要为杂填土、淤泥质土、粉质粘土。 ①杂填土:杂色,由粉质黏土、中粗砂、砼块及少量砼块等堆填而成,稍湿,结构松散。层厚度 0.3~2.7m,平均厚度 1.5m; ②淤泥质土:灰黑色,饱和,软塑,以粘粒为主,富含有机质及少量粉细砂,局部含砂粒。厚度 0.3~4.3m,平均厚度 3.5m;局部区域在该土层上方存在粉质粘土或砂质粘土; ③粉质粘土:红棕色,稍湿,可塑,主要由粘粒组成,土质不均,粘性一般,含少量粉粒。勘探深度 6m 范围内,揭露土层厚度 0.5~2.5m,平均厚度 1.1m。
地块水文地质 情况	地下水主要由上层滞水和潜水组成。上层滞水主要储存于地下水潜水面以上的素填土上部地带,这一地带属于与饱水带有直接水力联系的季节性含水层。潜水属场地下部地下水,主要储存于素填土下部、冲积砂层的孔隙和基岩风化裂隙中。水位稳定性一方面受大气降水等地表水体补给、掺入,另一方面受上下部含水带的水力联系影响。水位埋深浅,高差小,土层间相互水力联系较好,透水性

	较强,富术性较好。
	场地整体的地下水流向为由东北流向西南。
\$ 10 m 10	北区土壤有机物污染最深达 5m, 砷污染主要集中在地块北侧及西南侧区域,
污染物分布情况	且由上至下随深度增加,在 1.0~4.0m 深处土壤污染程度较重,上层和下层污染程
	度较轻。
目标污染物、修	地块目标污染物为土壤砷,修复目标值为 60mg/kg。
复目标情况	地次自你行来初为工操师,廖友自你值为 00mg/kg。
	(1) 第一阶段污染土壤修复范围
	第一阶段修复区域包括 R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3
	区。
	(2) 管控区范围
	地块污染区(R1-4、R2-2、R2-3、R3-1、R4-3、R5-3)紧邻广州地铁 5 号线
	东圃站 I 出口,根据《城市轨道交通既有结构保护技术规范》(DBJ/T15-120-
	2017)、《广州市城市轨道交通管理条例》(2024年1月1日颁布实施)等相关
	要求,经广州市地铁集团有限公司地铁保护办公室审核同意,东圃站 A 出口结构
土壤修复范围	南边界 10.1m 范围内为地铁保护区。
工來沙交把國	地块污染区(R2-3、R3-1、R4-3、R5-3)上遗留电房为骏景 F36 东圃木材厂
	开关房,电房内仍接驳电力公线线路和光纤线路。按最新规划,电房所占位置不
	影响日后的市政道路建设,电房日后保留使用不予迁移。电房的平面尺寸为
	4×7m, 电房北面为本项目北红线, 西面有高压电缆沟, 南面为空地, 东面为地铁
	保护区, 电房下面为本项目污染区, 污染深度 1-5 米。为保护电房与高压电缆,
	电房的保护范围区为电房结构西边线 3.1 米距离、电房结构南边线 2.21 米距离,
	电房保护南边线与地铁保护区边线相接。
	电房及地铁保护区管控面积为 897m²,管控深度范围 0-5m,涉及到的污染土
	壤方量为 2273m³。
修复方式及工艺	神污染土壤采用水泥窑协同处置技术进行修复,管控区域采用钢筋水泥层表
	面覆盖的措施,以切断砷超标土壤的人体暴露途径。
修复方案变更情况	实际施工过程中,
	第一阶段土壤修复于2024年9月16日开始,2024年10月30日第一阶段污
施工周期与进度	染土清挖工作,2024年11月1日完成第一阶段修复效果评估采样。修复实施关键
	节点与工程进度情况见表 3.4-37。
日及松后甘以五	第一阶段修复工作开挖顺序:第一阶段的污染土修复区域包括:R1-4、R2-1-
异位修复基坑开	1、R2-2、R2-3、R3-1-1、R4-3、R5-3,开挖顺序为 R1-4→R2-1-1、R2-2、R2-
挖方式	3→R3-1-1→R4-3→R5-3。
异位修复基坑清挖	第一阶段污染区实际清挖土壤量 5094.8 m³,比设计方量多 210.8 m³,扣除筛分筛上物
范围与深度	491m³后,筛下污染土壤 4603.3m³, 清挖深度为 0-5.0m。
修复后土壤土方	本地块第一阶段需修复污染土壤 5819m³, 广东清远广英水泥有限公司、阳春
量及最终去向	海螺水泥有限责任公司进行处置。
里	母塚小池百世以上五月九月大旦。

4.4.2 修复后场地概念模型

修复实施单位自 2024 年 3 月 21 日进场组建项目部并开展施工准备活动,2024 年 9 月 16 日开始第一阶段污染土壤修复工作,2024 年 11 月 3 日现场第一阶段污染土壤外运工作完工。根据场地调查报告、风险评估报告、修复方案、修复实施进度及效果评估监测结果,结合场地信息、修复设计参数、目标污染物浓度变化、污染物去除率等方面进行修复后地块概念模型更新。

4.4.2.1 污染源更新分析

(1) 目标污染物

- 1)清挖前土壤污染物砷最大浓度值为 517mg/kg。
- 2)第一阶段清挖后土壤污染物砷最大浓度值为 35.0mg/kg, 满足各修复目标值 (60mg/kg)要求。
- 3)第一阶段清挖后土壤目标污染物砷浓度得到有效降低或去除,去除效率为:93.2%。

(2) 修复范围与工程量

第一阶段清挖前后污染区域拐点坐标对比见表 4.4-3, 工程量对比见表 4.4-4。

表 4.4-3 清挖前后污染区域拐点坐标对比

修复区域	深度范围	编号	方案拐点坐标及高程(m)		方案清 方案清 方案清 挖深度 挖面积 (m)		清挖后拐点坐标及高程(m)		清挖后拐点坐标及高程(m)		实际清 挖面积	实际平均 清挖深度 (m)	清挖范围	备注
	(m)		X(纵坐标)	Y (横坐标)	(m ²)	ΔH	X(纵坐标)	Y (横坐标)	(m ²)	ΔH	对比			
		G09	2557009.792	38438132.310			2557009.760	38438132.017						
		G10	2557019.634	38438137.097			2557019.634	38438137.097						
R1-4	0-1.0	G12	2557000.308	38438171.306	230	1	2557000.308	38438171.306	241	1.01	增大 -			
K1-4	0-1.0	G13	2556988.829	38438153.649	230		2556988.829	38438153.634	241					
		a	2556996.777	38438166.363			2556996.899	38438166.065						
		b	2557010.484	38438132.647			2557010.570	38438132.434						
		G27	2557006.905	38438092.650			2557006.896	38438092.646						
R2-1-1	1.0-2.0	G31	2557003.472	38438123.924	227	1	2557003.657	38438124.316	236	1.02	增大			
		G53	2556990.108	38438113.581			2556989.825	38438113.614						
		G09	2557009.792	38438132.308			2557009.740	38438132.025						
		G10	2557019.634	38438137.097		ļ	2557019.634	38438137.097						
R2-2	1.0-2.0	G12	2557000.308	38438171.306	230	1	2557000.308	38438171.306	242	1.01	増大			
Κ2-2	1.0-2.0	G13	2556988.829	38438153.649		1	2556988.458	38438153.634	∠ 1 ∠	1.01	1 年八			
		a	2556996.899	38438166.065			2556996.779	38438166.360						
		b	2557010.484	38438132.647			2557010.554	38438132.467						

修复区域	深度范围	编号	方案拐点坐	标及高程(m)	方案清控面积	方案清 挖深度 (m)	清挖后拐点坐	清挖后拐点坐标及高程(m)		实际平均 清挖深度 (m)	清挖	备注
	(m)		X(纵坐标)	Y (横坐标)	(m ²)	ΔH	X(纵坐标)	Y (横坐标)	(m ²)	ΔH	対比	
		G23	2557030.941	38438071.82			2557030.918	38438071.58				
		G24	2557044.677	38438079.8			2557044.724	38438079.67				
		G26	2557023.566	38438108.35			2557023.412	38438108.48				
R2-3	1.0-2.0	G27	2557006.905	38438092.65	621	1	2557006.842	38438092.54	633	1.01	增大	
		c	2557023.989	38438108.09			2557023.989	38438108.09				
		d	2557032.294	38438089.58			2557032.294	38438089.58	_			
		e	2557039.15	38438092.45			2557039.15	38438092.45				
		G23	2557030.941	38438071.82			2557030.918	38438071.59		1.01	增大	
		G24	2557044.677	38438079.8			2557044.796	38438079.53				
		G50	2557004.479	38438146.65			2557004.285	38438146.64				
		G31	2557003.472	38438123.92			2557003.302	38438124.04				
		G53	2556990.108	38438113.58		1	2556989.78	38438113.67				
R3-1-1	2.0-3.0	G27	2557006.905	38438092.65	1303		2557006.76	38438092.45	1347			
		c	2557023.989	38438108.09			2557023.989	38438108.09				
		d	2557032.294	38438089.58			2557032.294	38438089.58				
		e	2557039.15	38438092.45			2557039.15	38438092.45) <u>AH</u> 对比		
		f	2557019.118	38438111.41			2557019.118	38438111.41				
		g	2557004.793	38438146.65			2557004.793	38438146.65				

修复区域	深度范围	编号	方案拐点坐标及高程(m)		方案清 方案清 挖面积 (m)		清挖后拐点坐标及高程(m)		清挖后拐点坐标及高程(m)		实际清 挖面积	实际平均 清挖深度 (m)	清挖	备注
(m)		X(纵坐标)	Y (横坐标)	(m ²)	ΔH	X(纵坐标)	Y (横坐标)	(m ²)	ΔH	对比				
		G23	2557030.941	38438071.82			2557030.858	38438071.55						
		G24	2557044.677	38438079.8			2557044.79	38438079.54						
		G50	2557004.479	38438146.51			2557004.793	38438146.68						
		G31	2557003.472	38438123.92			2557003.158	38438123.93		1.02	增大			
		G52	2556990.16	38438135.63		1	2556989.769	38438135.64	1506					
R4-3	3.0-4.0	G53	2556990.108	38438113.58	1477		2556989.867	38438113.64						
K4-3	3.0-4.0	G27	2557006.905	38438092.65			2557006.723	38438092.53						
		С	2557023.989	38438108.09			2557023.989	38438108.09						
		d	2557032.294	38438089.58			2557032.294	38438089.58						
		e	2557039.15	38438092.45			2557039.15	38438092.45						
		f	2557019.118	38438111.41			2557019.118	38438111.41						
		g	2557004.793	38438146.65			2557004.793	38438146.65						
		G23	2557030.941	38438071.82			2557030.838	38438071.56						
		G24	2557044.677	38438079.8			2557044.843	38438079.41						
R5-3	4.0-5.0	G61	2557026.417	38438121.58	796	1	2557026.417	38438121.58	814	1.02	增大			
		G62	2557011.105	38438114.09			2557010.853	38438114.22						
		G27	2557006.905	38438092.65			2557006.587	38438092.63						

修复区域	深度范围	编号	方案拐点坐标及高程(m)		方案清挖面积	方案清 挖深度 (m)	清挖后拐点坐标及高程(m)		实际清 挖面积	实际平均 清挖深度 (m)	清挖范围	备注
	(m)		X (纵坐标)	Y (横坐标)	(m ²)	ΔH	X (纵坐标)	Y (横坐标)	(m ²)	ΔН	对比	
		c	2557023.989	38438108.09			2557023.989	38438108.09				
		d	2557032.294	38438089.58			2557032.294	38438089.58				
R5-3		e	2557039.15	38438092.45			2557039.15	38438092.45				
		f	2557019.118	38438111.41			2557019.118	38438111.41				
		h	2557016.88	38438116.91			2557016.744	38438117.25				

阶	段&深度 (m)	区域	方案面积 (m ²)	方案方量 (实方)(m³)	开挖后报验量 (实方)(m ³)	实方方量差值(m³)
	0-1.0	R1-4	230	230	243.4	13.4
		R2-1-1	227	227	246.8	19.8
第	1.0-2.0	R2-2	230	230	238.4	8.4
阶		R2-3	621	621	639.3	18.3
段	2.0-3.0	R3-1-1	1303	1303	1360.5	57.5
	3.0-4.0	R4-3	1477	1477	1536.1	59.1
	4.0-5.0	R5-3	796	796	830.3	34.3
	小计	<u> </u>	4884	4884	5094.8	210.8

表 4.4-4 清挖前后工程量对比

清挖前后拐点坐标及工程量对比结果表明,第一阶段污染区清挖到位,修复范围及工程量达到相关要求。

(3) 污染物空间分布

第一阶段修复工程对地块污染土壤进行清挖,对清挖出来的污染土壤进行水泥 窑协同处置,与备案的修复方案对比,实际开挖土方量略增大,具体如下:

1) 修复前:

根据地块土壤污染状况风险评估报告,结合场地情况,《修复方案》中将修复区域分两个阶段进行修复,第一阶段砷污染土壤修复面积为 4884m²,修复范围包括R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3。

2) 修复后:

a.完成第一阶段污染区基坑污染土清挖,总清挖土方量 5094.8m³(实方),比修 复前设计土方量(4884m³)增加 210.8m³;

b.水泥窑协同处置土壤方量为 5819m3, 共转运 305 车次, 总质量为 9926.58 吨;

3) 修复过程中污染物排放情况:

项目施工期间共产生的废水渣块冲洗废水约 440m³,项目申请了排水证,处理后的水经检测达标后排入市政管网。

(4) 污染源更新结果

第一阶段修复效果评估结果表明,基坑清挖后土壤检测结果全部达到修复目标值,修复范围内的污染土已清挖完毕,污染土壤全部经水泥窑协同处置,疑似污染土壤、疑似环境管理土检测结果全部达到修复目标值,筛上物冲洗干净,经抽样称重,附着土壤量小于相关规范围要求,无需进行效果评估采样,可在第一阶段效果评估验收通过后,回填于基坑。

4.4.2.2 场地污染物暴露途径更新

- (1) 修复前场地土壤污染物为砷,污染深度 0-5m,其暴露途径包括:
- 1)经口摄入表层受污染土壤;
- 2) 皮肤接触表层受污染土壤;
- 3) 呼吸吸入表层受污染土壤扩散到室内外的颗粒物:
- (2)根据场地规划总平面方案,地块规划未来拟规划为文化设施用地(A2)和部分防护绿地(G2),修复后地块具体暴露途径包括:
 - 1)经口摄入表层受污染土壤;
 - 2) 皮肤接触表层受污染土壤;
 - 3) 呼吸吸入表层受污染土壤扩散到室内外的颗粒物。

修复后场地污染物暴露途径不变,土壤污染物浓度降至修复目标值以下,达到 人体健康风险可接受水平。

4.4.2.3 受体更新分析

修复前地块敏感受体为本地块工作人员,主要为成人:修复后场地敏感受体为

文化活动参与者,包括儿童和成人。

4.4.2.4 修复地块健康风险分析

第一阶段修复工程完工后,地块土壤目标污染物满足修复目标值要求,修复达到了预定目标,场地的重金属污染物已得到有效去除或降低,修复区域砷污染土壤已清挖外运处置。在文化设施用地(A2)和部分防护绿地(G2)方式下,修复后场地对人体健康产生的风险在可接受水平。

5 效果评估布点方案

5.1 土壤修复效果评估布点

修复效果评估监测点位的布设根据《污染地块风险管控与土壤修复效果评估技术导则(试行)》(HJ 25.5-2018)(简称"《效果评估技术导则》")、《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(修订版)》(简称"《审查要点》")、《建设用地土壤污染防治 第8部分:风险管控和修复效果评估技术规范》(DB4401/T 102.8-2024)、《广州市工业企业场地环境调查、治理修复及效果评估技术要点》(简称"《技术要点》")等规范要求进行。

5.1.1 效果评估范围

根据《技术要点》,修复效果评估范围的定义为:效果评估范围原则上应与场地环境调查评估确定的修复范围一致;当修复工程发生变更时,应根据实际情况对效果评估范围进行调整;效果评估范围还包括施工过程中污染土壤临时处理和堆置场所,污染治理设施临时场址。修复效果评估对象为场地修复过程涉及范围内的土壤和地下水。

根据广州市生态环境局《关于印发广州市污染地块土壤异地处置异地修复评审指南等评审管理指南的通知》(穗环〔2021〕96号)以及《关于印发广州市污染土壤水泥窑协同处置环境管理要点的通知》(穗环〔2023〕91号),地块污染土壤采用异地处置方式进行修复的,修复效果评估单位需对污染土壤异地处置进行效果评估,土壤污染修复效果评估报告需包含:

- (1) 土壤出场的环境质量要求相符性分析;
- (2) 土壤转运过程的二次污染防治措施落实情况及环境影响说明:
- (3) 土壤处置单位出具的已接收所有转运土壤的材料, 需加盖该单位公章;
- (4) 土壤处置单位的资格符合性分析,处置进展;

- (5) 环境监理单位提供的土壤运输过程和去向的支撑材料(视频、照片等);
- (6)接收地生态环境主管部门(区级或以上)实施监管的材料。

因此,根据以上规范要求,第一阶段的修复效果评估范围和对象定义为:

- (1) 基坑清挖效果评估:
- (2) 疑似污染土壤效果评估:
- (3) 筛上物抽样估算;
- (4) 污染土壤异地处置效果评估:
- (5) 危险废物清挖效果评估。

5.1.2 采样节点

(1)污染土壤清挖后遗留的基坑底部与侧壁,应在基坑清挖之后、回填之前进 行采样。

第一阶段土壤污染修复于 2024 年 9 月 16 日开始,10 月 30 日完成所有污染土壤和危险废物的清挖,在 9 月 18 日至 11 月 1 日期间效果评估单位对各污染区清挖后基坑底部与侧壁进行了 4 个批次的采样工作,另外委托了广州竞轩环保科技有限公司于 11 月 3 日对清挖后危险废物基坑采集了 1 个批次危废土壤样品。目前修复单位对基坑进行围挡、覆膜保护,待第一阶段效果评估通过后,再作回填处理。

(2) 若基坑侧壁采用基础围护,则宜在基坑清挖同时进行基坑侧壁采样,或于基础围护实施后在围护设施外边缘采样;若侧壁处于地块红线且基础围护上土壤已清挖干净,则无须进行该侧壁采样。

第一阶段土壤污染修复范围内污染区 R1-4、R2-2、R2-3、R3-1-1、R4-3、R5-3 基坑北边侧壁采用了基础围护,且基础围护上土壤已清挖干净,基础围护设施外边 缘为风险管控区,该部分侧壁不作布点采样。

(3) 可根据工程进度对基坑进行分批次采样。

本项目分阶段进行土壤修复工作,第一阶段修复区域包括R1-4、R2-1-1、R3-1-1、R4-3、R5-3基坑。根据《修复方案》,R2-1、R3-1基坑分别划分两个区域,其中R2-1-1、R3-1-1区域在第一阶段进行修复,剩下部分R2-1-2、R3-1-2在第二阶段进行修复。效果评估按照修复工程进度,对R2-1、R3-1基坑按整体基坑进行布点,分批次采样,第一阶段仅对R2-1-1、R3-1-1区域进行采样。

5.1.3 布点数量与位置

基坑底部和侧壁推荐最少采样点数量见表 5.1-1;

基坑底部采用系统布点法,基坑侧壁采用等距离布点法,布点位置参见图 5.1-1; 当基坑深度大于 1m 时,侧壁应进行垂向分层采样,应考虑地块土层性质与污染垂向分布特征,在污染物易富集位置设置采样点,各层采样点之间垂向距离不大于 3m,具体根据实际情况确定;

基坑坑底和侧壁的样品以去除杂质后的土壤表层样为主(0~20cm),不排除深层采样:

对于重金属和半挥发性有机物,在一个采样网格和间隔内可采集混合样,采样方法参照 HJ 25.2 执行。

基坑面积(m²) 坑底采样点数量(个) 侧壁采样点数量(个) ×<100 100≤×<1000 3 1000≤×<1500 4 6 1500 < × < 2500 5 7 6 8 2500≤×<5000 5000 <> < 7500 7 9 7500≤×<12500 8 10 网格大小不超过 40m×40m 采样点间隔不超过 40m ×>12500

表 5.1-1 基坑底部和侧壁推荐最少采样点数量

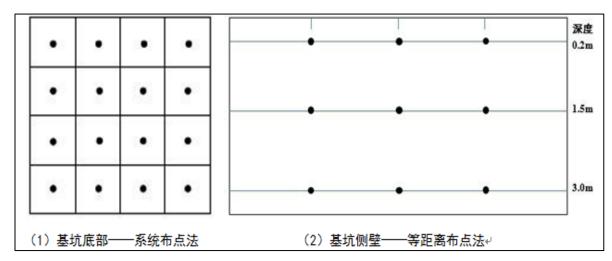


图 5.1-1 基坑底部与侧壁布点示意

对污染土层上、下 0~0.5m 或 0~1m 的土壤,如未纳入效果评估监测,在修复 开挖过程中宜作为疑似污染土进行采样检测,布点和采样要求按照异位修复后土壤 的要求进行,结合堆体大小划分采样单元。

以保证样品代表性为原则,充分反映堆体各个区域可能的污染物情况,一般采用系统布点法设置采样点;同时考虑修复效果空间差异,在修复效果薄弱区增设采样点,修复后土壤堆体的高度应便于修复效果评估采样工作的开展;重金属和半挥发性有机物可在采样单元内均匀布设采样点,采集不少于3个样品进行混合后检测。

堆体体积(m³)	采样点(单元)数量(个)
<100	1
100~300	2
300~500	3
500~1000	4
每增加 500	增加 1 个

表 5.1-2 修复土壤最少采样点数量

5.1.3.1 基坑底部和侧部采样布点

本地块关注的土壤污染物为砷,根据上述布点采样规范要求,在清挖后的基坑坑底和侧壁进行布点采样。

(1) 基坑底部土壤采样布点

将底部均分成块,单块的最大面积设置为400m²(20m×20m)。

第一层0-1m基坑(R1-4)坑底(1.0m)投影面积241m²,与下层污染层重叠,坑底不作布点采样;

第二层1-2m基坑(R2-1)坑底(2.0m)投影面积5754 m^2 ,本阶段验收范围为 R2-1-1,坑底(2.0m)投影面积为246.8 m^2 ,与下层污染层重叠,坑底不作布点采样;

第二层1-2m基坑(R2-2)坑底(2.0m)投影面积236 m²,与下层污染层不重叠区域面积为209m²,共布设3个采样单元,每个采样单元面积约69.7 m²;

第二层1-2m基坑(R2-3)坑底(2.0m)投影面积633 m²,与下层污染层重叠,坑底不作布点采样;

第三层2-3m基坑(R3-1)坑底(3.0m)投影面积6139m²,本阶段验收范围为 R3-1-1,坑底(3.0m)投影面积1347 m²,与下层污染层重叠,坑底不作布点采样;

第四层3-4m基坑(R4-3)坑底(4.0m)投影面积1506 m²,与下层污染层不重叠区域面积为710m²,共布设3个采样单元,每个采样单元面积约236.7 m²:

第五层4-5m基坑(R5-3)坑底(5.0m)投影面积814m²,共布设3个采样单元,每个采样单元面积约271.3m²。

每个采样单元采集9个样品混合成1个混合样,共采集9个土壤混合样品。 原则上,某上层污染区域与下层污染区域重叠部分坑底不作布点采样。

(2) 基坑侧壁土壤采样布点

根据每个清挖地块大小、基坑边长和污染的强度,将四周的侧面等分成段, 每段长度设置为不大于40m,每段布设1个采样剖面。

项目各异位修复区域基坑深度均大于1m,每个侧壁采样剖面均按垂向分层采样 原则进行布点,每1~3m分一层,不足1m时与上一层合并。

基坑侧壁土壤采样采用等距离布点方法,由于每个清挖基坑均为不规则形状,

基坑边长按照基坑面积进行估算,即基坑边长 $L\approx 4\sqrt{S}$ 。根据每个清挖地块大小、基坑边长和污染的强度,将四周的侧面等分成段,每段长度不超过40m,每段设置布设1个采样剖面。

第一层0-1m基坑(R1-4)污染层为0~1.0m, 边长约45m(扣除管控区交接面支护桩部分), 侧壁共布设5个横向采样段, 2个垂向采样段, 共布设10个采样单元, 每段长度约9m;

第二层1-2m基坑(R2-1)污染层为1.0~2.0m, 边长约315m(扣除地块红线支护桩部分),侧壁共布设9个横向采样段(编号A~I),1个垂向采样段,共布设9个采样单元,每段长度约35m。本阶段验收范围为R2-1-1基坑,仅对R2-1侧壁中的H段侧壁进行采样,共布设1个采样单元。

第二层1-2m基坑(R2-2)污染层为1.0~2.0m, 边长约45m(扣除管控区交接面支护桩部分), 侧壁共布设5个横向采样段, 1个垂向采样段, 共布设5个采样单元, 每段长度9m;

第二层1-2m基坑(R2-3)污染层为1.0~2.0m, 边长约72m(扣除扣除管控区交接面支护桩部分或地块红线支护桩部分),侧壁共布设5个横向采样段,1个垂向采样段, 共布设5个采样单元, 每段长度约14.4m;

第三层2-3m基坑(R3-1)污染层为2.0~3.0m, 边长约340m(扣除扣除管控区 交接面支护桩部分或地块红线支护桩部分),侧壁共布设12个横向采样段(编号 A~F、H~M),1个垂向采样段,共布设12个采样单元,其中A~F段每段长度约 29.7m,H~M段每段长度约27m。本阶段验收范围为R3-1-1基坑,仅对R3-1侧壁中的 E、F、H段侧壁进行采样,共布设3个采样单元;

第四层3-4m基坑(R4-3)污染层为3.0~4.0m,边长约127m(扣除扣除管控区交接面支护桩部分或地块红线支护桩部分),侧壁共布设7个横向采样段,1个垂向采样段,共布设7个采样单元,每段长度18.1m:

第五层4-5m基坑(R5-3)污染层为4.0~5.0m, 边长约76m(扣除扣除管控区交接面支护桩部分或地块红线支护桩部分),侧壁共布设5个横向采样段,1个垂向采样段,共布设5个采样单元,每段长度15.2m。

每个采样单元采集9个样品混合成1个样品,共采集45个土壤混合样品,监测因 子及布点情况见表5.4-1,采样布点示意见图5.4-1~5.4-16。

表5.1-3 基坑坑底及侧壁土壤采样布点数汇总

基坑分	修复区域	极有口坛	修复深	修复	坑底投影	修复	与下层基	基坑/	底部		基均	亢侧壁		样品数	
层	编码		I III		厚度 (m)	面积 (m²)	方量 (m³)	坑不重叠 面积 (m²)	布点单元 (个)	样品数 (个)	边长 L (m)	横向采样段(段)	垂向样品数(个/段)	样品数(个)	小计 (个)
第一层	R1-4	砷	0-1	1.0	229	229	0	0	0	45	5	2	10	10	
	R2-1-1	砷	1-2	1.0	227	227	0	0	0	35	1	1	1	1	
第二层	R2-2	砷	1-2	1.0	229	229	195	3	3	45	5	1	5	8	
	R2-3	砷	1-2	1.0	653	653	0	0	0	72	5	1	5	5	
第三层	R3-1-1	砷	2-3	1.0	1357	1357	0	0	0	86	3	1	3	3	
第四层	R4-3	砷	3-4	1.0	1516	1516	691	3	3	127	7	1	7	10	
第五层	R5-3	砷	4-5	1.0	825	825	825	3	3	76	5	1	5	8	
夕 分 (1)	合计 / 5036 / 9 9 / 31 / 36						45								

备注: (1)基坑底部按照不超过每400m²一个布点单元进行划分; (2)基坑侧壁横向采样段按不超过40m长度进行划分布点,各层采样点之间垂向距离不大于3m; (3)基坑底部每块布点单元及侧壁每段区域分别采集9个样品制成一个混合样; (4)某上层污染区域与下层污染区域重叠部分坑底不作布点采样。

5.1.3.2 疑似污染土采样布点

按疑似污染土暂存情况(堆存高度、体积等),按修复后土壤最少采样点数量要求,采用系统布点法布设采样点位,在每个采样单元采集上、中、下部采集不少于3个土壤样品制成1个混合样品。

疑似污染土壤具体监测因子及布点情况见表 5.1-4。

区域 监测因子 堆体土方量(m³) 堆体高度(m) 土壤样品数(个) 疑似污染土堆场 砷 720.9 3 4 YSW1 疑似环境管理土堆场 砷 179.8 2 3 YSH1

表5.1-4 疑似污染土采样布点数汇总

5.1.4 检测指标

根据《效果评估技术导则》,基坑土壤的检测指标一般为对应修复范围内土壤中目标污染物;存在相邻基坑时,应考虑相邻基坑土壤中的目标污染物。

本地块效果评估检测指标及样品数见表 5.1-5。

类别	分区	检测指标	样品数			
	R1-4基坑	砷	10			
	R2-1-1 基坑	砷	1			
	R2-2 基坑	砷	8			
基坑土壤	R2-3 基坑	砷	5			
	R3-1-1 基坑	砷	3			
	R4-3 基坑	砷	10			
	R5-3 基坑	砷	8			
疑似污染土壤	YSW1	砷	4			
	YSH1	砷	3			
	合计					

表 5.1-5 效果评估检测指标及样品数

5.1.4 评估标准值

针对清挖后的场地,须对场地清挖后的基坑坑底和基坑壁土壤进行采样检测,

评价每一块清挖区域基坑是否还存在污染土壤,修复效果评估检测指标为土壤目标污染物砷,评估标准为土壤修复目标值,见表 5.1-6。

表 5.1-6 场地污染土壤修复目标值

污染物	风险控制值	风险筛选值	风险管制值	修复目标值
砷	1.49mg/kg	60mg/kg	140mg/kg	60mg/kg

6 现场采样与实验室检测

6.1 样品采集

6.1.1 现场土壤采样

按照《土壤环境监测技术规范》(HJ/T 166-2004)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)和《工业企业场地环境调查评估与修复工作指南(试行)》的相关要求,进行土壤样品采集。

本地块第一阶段涉及对基坑表层土壤样品的采集,以及疑似污染土堆体深层(3m) 土壤采样。

样品采集采用挖掘方式进行,采样工具为木铲、竹片、专用钻孔取土器等。表层 土采样采用手工采样,先用木铲、竹片等工具将地表物质去除,并挖掘到指定深度, 然后进行样品采集。深层土壤(疑似污染土堆体底部)采用挖槽方式辅助采样,借助 挖机从土堆上部挖掘出一定深度凹槽,在凹槽内采集不同深度样品。采集土壤样时, 把表层硬化碴块和大的砾石、树枝剔除。采样过程中佩戴手套。每采完一次样,都将 采样工具用自来水洗净后再用蒸馏水淋洗一遍。

6.1.2 样品保存与流转

依据《土壤环境监测技术规范》(HJ/T 166-2004)、《工业企业场地环境调查评估与修复工作指南(试行)》"附录 2 土壤样品保存要求"以及土壤重金属监测因子分析方法等相关规范要求,对土壤样品收集器选型,并按规范对样品进行运输和保存。

本项目主要涉及重金属样品,采集后用具有聚四氟乙烯密封袋。

在采样现场样品逐件与样品登记表、样品标签和采样记录进行核对,核对无误后装箱。运输过程中严防样品的损失、混淆和沾污。由专人将土壤样品送到实验室后尽快分析,送样、接样双方同时清点核实样品,并在样品交接单上签字确认。土壤样品采集及保存情况见表 6.1-1。

	WOLL TWILLIAM WILLIAM									
检测 指标	采样容器	采样情况	采样日期	分析时间	允许 保存期					
砷	聚四氟乙烯密封袋	每个点采集 1 袋, 约 1kg	2024-09-18	2024-09-20~23	180d					
砷	聚四氟乙烯密封袋	每个点采集 1 袋, 约 1kg	2024-09-30	2024-10-08~09	180d					
砷	聚四氟乙烯密封袋	每个点采集 1 袋, 约 1kg	2024-10-15	2024-10-19~21	180d					
砷	聚四氟乙烯密封袋	每个点采集 1 袋, 约 1kg	2024-11-01	2024-11-05~06	180d					

表 6.1-1 土壤样品采集和保存情况

6.1.3 现场质量控制

为避免采样设备及外部环境条件等因素对样品产生影响,按照《土壤环境监测技术规范》(HJ/T 166-2004)、《建设用地土壤污染风险管控和修复 监测技术导则》(HJ 25.2-2019)、《工业企业场地环境调查评估与修复工作指南(试行)》、《技术要点》等相关要求,在样品的采集、保存、运输、交接等过程建立完整的管理程序,做好现场采样过程中的质量保证和质量控制。

(1) 防止采样过程交叉污染措施

基坑侧壁、坑底表层土采样采用手工采样。手工采样是先用木铲、竹片等工具将地表物质去除,并挖掘到指定深度,然进行样本采集,不使用铬合金或其他相似质地的工具。采集土壤样时,把表层硬化碴块和大的砾石、树枝剔除。采样过程中佩戴干净的一次性手套,为避免不同样品之间的交叉污染,每采集一个样品更换一次手套。每采完一次样,都将采样工具用自来水洗净后再用蒸馏水淋洗一遍。

(2) 现场采样质量控制措施

采集现场质量控制样为平行样,在采样过程中,同种采样介质,同批次采集至少 一个平行样。

(3) 现场采样记录控制措施

现场采样时,制定详尽的现场采样记录、现场监测记录,使用表格对土壤特征、可疑物质或异常现象等描述,并保留现场相关照片、影像记录,确保现场记录的内容、

页码、编号齐全以便于核查,现场记录改动注明修改人及时间。

现场采样记录见附件 4。

6.2 实验室检测

6.2.1 检测方法

监测分析方法采用国家标准或行业标准或规范。修复效果评估监测阶段监测分析方法见表 6.2-1。

类别	监测项目	检测方法	分析仪器型号/名 称	仪器编号	检出限
土壤	砷	GB/T22105.2-2008 土壤质量 总 汞、总砷、总铅的测定 原子荧 光法	原子荧光计/Kylin- S12	ZJ202003008	0.01mg/kg

表 6.2-1 检测分析方法、分析仪器及检出限

6.2.2 实验室质量控制

按照《技术要点》的质控要求,样品分析按各监测方法的规定做好实验室空白、平行样(现场密码及实验室)、加标回收、标准物质分析等质控措施,并形成质控统计表输入报告内容中。

质量控制样品数量比例不低于《技术要点》要求:即空白样(实验室)、平行样(现场密码、实验室)、加标回收、标准物质等 4 类质控措施按 10%左右进行。

为确保监测数据准确无误,严格执行数据三级审核制度,对每个环节实施质量管理和检查验收,严把数据质量关,发现可疑数据或疑难问题,监测负责人组织相关人员查证分析解决,有疑问的数据绝不上报。

平行双样测定结果的误差评价参照《土壤环境监测技术规范》(HJ/T 166-2004)表 13-1 的规定,在允许误差范围之内者为合格。当样品的均匀性和稳定性较好时,参考表 6.2-3 的规定。

表 6.2-2 土壤监测平行双样最大允许相对偏差

含量范围(mg/kg)	最大允许相对偏差(%)		
>100	±5		

含量范围(mg/kg)	最大允许相对偏差(%)
10~100	±10
1.0~10	±20
0.1~1.0	±25
<0.1	±30

实验室分析质控小结:

场地第一阶段修复效果评估检测共采集土壤样品数 52 个,采集现场平行样 7 对,实验室分析室内空白样 10 个,实验室分析室内平行样 8 对,实验室内加标回收分析 8 个,标准物质分析 7 个。现场平行样、室内平行样、实验室内加标样、标准样品分析结果均合格。

6.3 外部质量控制监督管理

原广州市环境保护局于 2015 年 12 月 15 日颁布了《广州市环境保护局办公室关于加强污染场地治理修复工程验收监测工作的通知》(穗环办〔2015〕193 号文),对非环境保护行政主管部门所属的环境监测单位进行验收监测时,提出了外部质量控制监督要求,即接受区级以上环境保护行政主管部门所属环境监测单位质量控制监督管理。

根据污染场地治理修复工作特点,对污染物项目进行质量控制。项目评价依据相 关监测分析方法的精密度要求。

外部质量控制采用密码平行样品分析、平行样品抽样分析和采样现场监督检查三种方式进行。广州市生态环境局委托广州环投设计研究院有限公司和广州环净环保工程有限公司(简称"质控监督单位")对本地块开展外部质量控制监督管理工作,并对相关项目平行样分析结果的准确性进行评价,并出具评价结果。

根据《广州市土壤污染状况调查及修复效果评估监测质量监督工作指引》(穗环(2023)88号)要求,对开展土壤污染状况调查详细采样分析的地块和土壤污染修复效果评估的地块,100%实施质量监督。

6.3.1 监督方式选择

本次评估采取了密码平行样分析和平行样抽测分析两种监督方式。

密码平行样品分析和平行样抽测分析均由质控监督单位对相关项目监督,并出具相应评价。

6.3.2 密码平行样质控监督

(1) 样品来源

我司根据修复效果评估监测方案对样品进行采集的同时,按照比例不低于 5%及总数不少于7个的要求采集平行样,送质控监督单位质控室进行样品加密。效果评估验收监测期间共采集了3个批次共21个质控样品(第3批次质控样品按100%总样品数采集仍不满足最少送样数量要求,与第4批次质控样品合并为一个批次送样)。

(2) 样品加密

质控监督单位选派2名以上技术人员共同实施样品加密工作。在我司采集的平行样中随机抽取5-10%样品(不少于7个平行样),去掉原样品标签,按密码样编码规则重新编码后粘贴新标签。密码样品的加密过程由2人共同完成,做好登记,并对加密前后样品拍照留影。效果评估监测期间质控监督单位对我司采集的3个批次的样品完成了加密工作。

序号	样品数 (个)	送样日期	送样数 (个)	随机加密样 品数(个)	目标 污染物	监督检查 结果	监督检查 结论
1	10	2024年9月19日	10	7	砷	合样率 100%	通过
2	14	2024年10月8日	14	7	砷	合样率 100%	通过
3	28	2024年11月5日	14	7	砷	合样率 100%	通过

表 6.2-5 密码平行样送样及分析情况

(3) 样品分析

密码样品由质控监督单位交我司实验室进行样品分析,做好交接记录。效果评估

验收监测期间我司在规定时间内完成了3个批次的密码样品的分析工作。

(4) 结果判断

我司完成每批次实际样品及密码平行样品分析后,15个工作日内提交了1份加盖CMA章的正式检测报告至质控监督单位。效果评估验收监测期间我司共出具了个3份密码样分析报告并在规定时间内提交,质控监督单位对分析结果进行解密,出具了3份质控监督结果通知单(附件11)。

根据质控监督单位出具的效果评估监测质量监督结果通知单结论,土壤砷共 21 个密码平行样共 21 对数据,依据《广州市土壤污染状况调查与修复效果评估监测质量监督技术规则》表 4-1 的质控要求进行质量评价,砷 21 对密码平行样数据相对偏差范围为 1.3~12%,合格率为 100%,所有质量监督检查结论均为通过。

6.3.3 平行样抽测质控监督

(1) 样品来源

质控监督单位在我司修复效果评估监测样品采集时,选派 2 名技术人员实施 1 个批次平行样抽测工作,在我司 2024年9月18日采集的平行样中随机抽取 50%共 5 个样品进行抽测分析。

(2) 样品分析

平行样抽测分析: 质控监督单位对抽测的5个平行样品进行分析。

(3) 结果判断

我司完成实际样品分析后,在 15 个工作日内提交了 1 份加盖 CMA 章的正式监测报告至质控监督单位。质控监督单位在 5 个工作日内出具了质量监督检查结果单(附件11)。

根据质量监督检查结果单结论,该批次监督结果,土壤砷5对平行样的检测结果全部合格,合格率为100%。

6.3.4 质控监督结果

根据质控监督单位出具的质量监督检查结果单,第一阶段效果评估验收监测期间, 我司送检的 3 个批次密码平行样质控结果以及 1 个批次的平行样抽测质控结果均为合格,土壤样品检测结果可信。

7效果评估

7.1 评估方法

根据《技术导则》要求,本项目采用逐一对比的方法判断整个场地是否达到修 复效果。应将样品检测值与修复效果评估标准值逐个对比:

- a) 若样品检测值低于或等于修复效果评估标准值,则认为达到修复效果;
- b) 若样品检测值高于修复效果评估标准值,则认为未达到修复效果。

所有样品的污染物监测值均满足以上的要求,则认为达到验收标准,方可判定 场地达到修复效果。

7.2 检测结果分析

7.2.1 基坑清挖检测结果

7.2.1.1 第一层污染区基坑检测结果

2024年9月18日,我司对场地第一阶段第一层污染区R1-4基坑清挖后土壤进行检测,其中基坑侧壁采集土壤样品10个,坑底与下层污染层投影面积重叠,不作采样。 共采集土壤样品10个,检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.2.1.2 第二层污染区基坑检测结果

2024年9月30日,我司对场地第一阶段第二层污染区R2-1-1、R2-2、R2-3基坑清挖后土壤进行检测。其中R2-1-1基坑侧壁采集土壤样品1个,坑底与下层污染层投影面积重叠,不作采样; R2-2基坑侧壁采集土壤样品5个,坑底采集土壤样品3个; R2-1-1基坑侧壁采集土壤样品5个,坑底与下层污染层投影面积重叠,不作采样。第二层共采集土壤样品14个,检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.2.1.3 第三层污染区基坑检测结果

2024年10月15日,我司对场地第一阶段第三层污染区R3-1-1基坑清挖后侧壁及

坑底土壤进行检测。其中基坑侧壁采集土壤样品3个,坑底与下层污染层投影面积重叠,不作采样,检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.2.1.4 第四层污染区基坑检测结果

2024年11月1日,我司对场地第一阶段第四层污染区R4-3基坑清挖后侧壁及坑底土壤进行检测。其中侧壁采集土壤样品7个,坑底采集土壤样品3个,共采集样品10个。检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.2.1.5 第五层污染区基坑检测结果

2024年11月1日,我司对场地第一阶段第五层污染区R5-3基坑清挖后侧壁及坑底 土壤进行检测。其中侧壁采集土壤样品5个,坑底采集土壤样品3个,共采集样品8个。 检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.2.2 疑似污染土壤检测结果

2024年11月1日,我司对场地疑似污染土壤堆体YSW1、疑似环境管理土堆体YSH1进行检测,其中YSW1采样4个土壤样品,YSH1采集3个土壤样品,共采集9个样品,检测项目为砷。

所有点位污染物砷检测结果均达到修复目标值。

7.3 效果评估结论

7.3.1 基坑清挖效果评估结论

根据 2024 年 9 月 18 日、9 月 30 日、10 月 15 日以及 11 月 1 日所采集的四个批次 45 个土壤样品检测结果,第一阶段所有污染区 R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3 基坑坑底和侧壁土壤样品检测结果范围为 4.56~35.0mg/kg,均低

于修复目标值 60mg/kg, 表明污染土壤已清挖干净, 污染物得到有效去除, 满足后续开发利用要求。

7.3.2 疑似污染土效果评估结论

根据 11 月 1 日所采集的 1 个批次共 7 个疑似污染土(含疑似环境管理土)样品检测结果,第一阶段清挖的疑似污染土检测结果范围为 12.1~27.1mg/kg,均低于修复目标值 60 mg/kg,表明疑似污染土可作为清洁土或环境管理土,待第一阶段效果评估通过后,回填于基坑。

7.4 筛上物抽样估算效果评估结论

根据《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(修订版)》相关要求,2024年11月8日,项目环境监理单位在我司技术人员见证下对筛上物的附着物量进行抽查。对采集的土壤样品进行称重,根据单位体积的土壤重量,估算每100m³中附着的土壤量,抽样结果见表7.2-14。

表 7.2-14 筛上物抽样估算结果

序号	抽取筛上物方 量(m³)	附着土壤重量(kg)	每 100 m ³ 附着土壤量 (kg/100m ³)	限值要求 (kg/100m³)	达标与 否
1	215	140	64.2	<100	是

备注:数据来源监理单位筛上物抽样估算结果单,采集的土壤含部分碎石和水分,无法完全分离,实际筛上物附着土壤量小于 64.2kg/100m³。

综上,第一阶段冲洗后筛上物每 100m³ 附着的土壤量不超过 100kg,表明筛上物已冲洗干净,效果评估单位对冲洗后筛上物不作布点采样。冲洗后筛上物可在第一阶段效果评估通过后,回填于基坑。

7.5 危险废物清挖效果评估结论

危废基坑完成清挖后,效果评估单位委托广州竞轩环保科技有限公司对危险废物清挖完成情况进行验收,编制完成了《广州市木材公司地块危险废物土壤清挖完成情况验收报告》(以下称《危废清挖验收报告》),并通过了 2024 年 11 月 18 日由我司组织的专家评审会。评审结论如下:

广州市木材公司地块危险废物清挖完成情况验收工作参照《建设用地土壤污染风险管控和修复监测技术导则》(HJ25.2-2019)、《建设用地土壤污染修复效果评估监测质量控制技术规范》(DB44/T 2417-2023)、《危险废物鉴别技术规范》(HJ 298-2019)等要求进行,分别从浸出毒性、毒性物质含量进行检测分析,并进行相应的采样和检测分析,结果表明,5 个基坑(6 个危废区域)检测结果均未超出相应的标准限值。结合现场勘查、资料分析及检测结果进行综合判定,判定结果为:广州市木材公司地块危险废物清挖后遗留的基坑污染土壤不具有危险特性,不属于危险废物,本次危废清挖已到位,无需继续扩大范围进行清挖。

综上,地块内判定的危险废物已全部按"含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质(900-041-49)"完成清挖转运,地块内已无积存的危险废物。

7.6 污染土异地处置效果评估结论

地块污染土壤异地处置修复效果评估主要通过对修复单位污染土壤清挖记录、转运台账和《施工总结报告》,环境监理单位提供的土壤运输过程和污染土去向的支撑材料、二次污染防治措施落实情况和《监理报告》,土壤处置单位的资质材料、出具的已接收所有转运土壤的证明文件,审核结果如下:

(1) 土壤出场的环境质量要求相符性分析

根据广东新创华科环保股份有限公司《广州市木材公司地块重金属污染土壤危险特性鉴别报告》(附件 13),地块内第一阶段修复区域内土壤经鉴别不具备相应危险特性,不属于危险废物,可按照一般固体废物的处理方式,对污染土壤进行水泥窑协同处置,符合外运出场环境质量要求。

(2) 土壤转运过程的二次污染防治措施落实情况及环境影响说明

经审核《监理报告》,通过对土壤运输过程和污染土去向的支撑材料、二次污染 防治措施落实情况进行分析,环境监理单位对地块污染土壤的开挖过程和污染土外 运至光远环保的装车、密封、场内运输、过磅、出场洗车、路程运输、水泥厂进场 过程进行了全程跟踪、监督,并对转运过程可能产生的二次污染防治措施落实情况 进行了环境监理。

在污染土壤外运过程中,现场监理员确认每日进场车次,每车外运土方量等内容;从 2024年9月28日至2024年11月3日,共计外运305车次。水泥窑协同处置单位—清远海螺环保科技有限责任公司和阳春海螺环保科技有限公司共接收地块的污染土壤合计9926.58吨。该过程中,现场监理员在装车完成后现场确认车辆密闭情况;监督车辆过磅,确认每辆车次的运输方量,监督运输车辆不超载行驶;监督车辆出场前对车轮及车辆外壁的清洗过程。

污染土壤转运过程按《修复方案》要求,落实了相应的二次污染防治措施,整 个转运过程对环境的影响较小。

(3) 土壤处置单位出具的已接收所有转运土壤的材料落实情况

根据清远海螺环保科技有限责任公司和阳春海螺环保科技有限公司出具的接收证明,截至 2024 年 11 月 11 日地块污染土壤合计 14466.43 吨已于由协同处置单位接收完成,证明见附件 17。

(4) 土壤处置单位的资格符合性分析

本项目第一阶段水泥窑协同处置单位为清远海螺环保科技有限责任公司和阳春海螺环保科技有限公司。

清远海螺环保科技有限责任公司经营范围包括:协同处置列入《国家危险废物名录》(2021年版)的 HWO2,HWO6、HWO8.HWO9、HW11、HW12、HW13、HW16、HW17,HW18、HW21.HW22、HW23、HW34、HW46、HW48、HW49、HW50 共 18 大类危险废物 7 万吨 1 年; 线协同处置列入《国家危险废物名录》(2021年版)的 HWO2,HWO6、HWO8.HWO9、HW11、HW12、HW13、HW16、HW17,HW18、HW21.HW22、HW23、HW34、HW46、HW48、HW49,HW50,共18 大类危险废物 7 万吨 1 年;协同处置废旧纺织品、废皮革制品、废橡胶制品、废玻

璃、含钙废物、无机废水污泥、污染土、河道污泥等一般工业固废 3 万吨/年, 共 10 万吨/年, 其营业执照见图 7.2-7。

阳春海螺环保科技有限公司经营范围包括:协同处置固体废物 10 万吨/年,其中危险废物 7 万吨/年,包括医药废物(HW02),废有机溶剂与含有机溶剂废物 (HW06),废矿物油与含矿物油废物(HW08)),精(蒸)馏残渣(HW11),染料、涂料废物(HW12),有机树脂类废物(HW13),表面处理废物(HW17),含铜废物 (HW22),含锌废物(HW23),废酸(HW34),含镍废物(HW46),有色金属冶炼废物 HW48),其他废物(HW49),废催化剂(HW50)共 14 类;一般工业固体废物 3 万吨/年,包括城市和工业污水处理污泥、受污染土壤,其营业执照见图 7.2-8。

(5) 土壤运输过程和去向支撑材料落实情况

根据环境监理单位提供的《监理报告》以及修复施工过程中的相关视频和照片 资料显示,地块污染土壤外运过程中运输车辆严格按照修复方案确定的运输路线进 行污染土运输,自地块现场运输至水泥厂途中的行程路线如下:

- 1) 清远海螺环保科技有限责任公司途径广州环城高速、许广高速;
- 2)阳春海螺环保科技有限公司途径广州环城高速、沈海高速、广佛肇高速、广 昆高速、汕湛高速。

环境监理单位对车辆运输路线进行了全程跟踪定位,跟踪车辆进入水泥厂并卸 土至暂存间的过程,运输过程无土方遗漏的现象。地块污染土壤已按修复方案运至 水泥厂协同处置,运输过程落实了二次污染防治措施。

(6) 接收地生态环境主管部门(区级或以上)实施监管的材料

地块污染土壤转运前,修复单位已将转运计划、转运路线向广州市、清远市及 阳春市生态环境主管部门进行报备后实行土壤外运工作。

(7) 结论

地块内污染土壤已合部转运至清远海螺环保科技有限责任公司和阳春海螺环保 科技有限公司进行协同处置,运输过程无土方遗漏的现象,落实了二次污染防治措 施,对环境的影响较小。

8 结论与建议

8.1 修复工程概况

广州市木材公司地块位于广州市天河区黄埔大道东580号,地块中心经纬度为东经113°23′45.32″,北纬23°6′38.82″,地块占地面积为32173.18m²。地块北侧为黄埔大道东,东临广州环城高速,南面靠近珠江,西面紧邻广东海警局。地块计划由工业用地变更为文化设施用地(A2)和部分防护绿地(G2)。

广东绿日环境科技有限公司对地块开展了土壤污染状况调查及风险评估工作。
2021年8月25日,广州市环境技术中心主持召开了《初调报告》、《详调报告》和《风评报告》)专家评审会。由于特征污染物识别不清,土壤、地下水布点及采样深度等未能满足规范要求,现有数据不能支撑调查结论,专家组不同意《初调报告》、《详调报告》通过评审。2021年11月11日,广州市环境技术中心重新主持召开了《初调报告》、《详调报告》和《风评报告》专家评审会,专家组原则同意通过评审,经修改完善并复核通过后作为下一步环境管理工作的依据。根据调查与风评报告结论,本地块土壤中关注污染物为砷,对人体的健康危害存在较大的风险,不符合场地后期的规划要求,土地使用权人需对土壤污染物砷进行土壤污染修复。

广州市番禺环境工程有限公司(修复单位)和广东省城规建设监理有限公司(环境监理单位)于2024年6月编制完成《修复方案》、《监理方案》,并于2024年6月24日通过了土地使用权人主持召开的专家评审会,《修复方案》、《监理方案》经过修改完善后,于2024年7月10日通过了专家组长复核,并于2024年7月24日通过了广州市环境技术中心组织的专家复核。

根据《修复方案》,第一阶段修复工程主要规模为:对R1-4、R2-1-1、R2-2、R2-3、R3-1-1、R4-3、R5-3污染区基坑重金属砷污染土壤(共5094.8m³)进行清挖,水泥窑协同处置污染土壤,清洁土回填。

修复单位于2024年9月16日至2024年10月30日对广州市木材公司地块开展污染场

地第一阶段修复工作,已完成修复工程量如下:

- (1)第一阶段污染区域共清挖污染土壤5094.8m³(实方),扣除筛分筛上物491m³(实方)后,筛下污染土壤4603.3m³(实方)。清挖灌注桩土1271.4m³(实方),扣除筛分筛上物17m³(实方)后,筛下污染土壤1254.4 m3(实方);
 - (2) 共计清挖疑似污染土方量584 m³ (实方);
 - (3) 共计清挖转运危险废物土壤574.1m³(实方);
 - (4) 共计处理项目废水量440m³。

依据《效果评估方案》及土地使用权人要求,我司开展了地块土壤污染修复效果评估工作,内容包括污染场地基坑清挖效果评估、疑似污染土壤、筛上物等,并 委托了广州竞轩环保科技有限公司对危险废物清挖后基坑进行验收工作。

8.2 修复范围及工程量审核

根据《施工总结报告》,场地内第一阶段土壤中超修复目标值的污染物为砷,修 复土方量为4884m³。

(1) R1-4 污染区基坑

R1-4基坑实际开挖土方量为243.4m³,与修复方案(230m³)相比,超挖土方量13.4m³。

(2) R2-1-1 污染区基坑

R2-1-1基坑实际开挖土方量为246.8 m^3 ,与修复方案(227 m^3)相比,超挖土方量19.8 m^3 。

(3) R2-2污染区基坑

R2-2基坑实际开挖土方量为238.4m³,与修复方案(230m³)相比,超挖土方量8.4m³。

(4) R2-3污染区基坑

R2-3基坑实际开挖土方量为639.3m³,与修复方案(621m³)相比,超挖土方量18.3m³。

(5) R3-1-1污染区基坑

R3-1-1基坑实际开挖土方量为1360.5m³,与修复方案(1303m³)相比,超挖土方量57.5m³。

(6) R4-3污染区基坑

R4-3基坑实际开挖土方量为1536.1m³,与修复方案(1477m³)相比,超挖土方量59.1m³。

(7) R5-3污染区基坑

R5-3基坑实际开挖土方量为830.3m³,与修复方案(793m³)相比,超挖土方量34.3m³。

综上所述,土壤开挖污染土方量约5094.85m³,与修复方案(4884m³)相比,超 挖土方量210.8m³。

8.3 阶段性施工总结报告结论

2024年8月2日,《修复方案》及《环境监理方案》完成广东省建设用地污染地块信息系统备案。2024年8月3日开始展开了本地块土壤污染修复工作,至2024年11月7日,我司已完成本地块第一阶段污染土壤清挖和外运、清挖筛上物的冲洗、废水处理等全部修复工作。

2024年8月2日至8月12日完成地铁保护区和电房保护区垂直方向管控措施的施工,2024年11月7日至11月23日完成地铁保护区和电房保护区水平方向管控措施的施工。

在实施过程中,严格依据相关法律法规、技术规范与标准、已备案的《修复方案》和《环境监理方案》等技术文件开展现场修复工作,结论具体如下:

修复单位完成了广州市木材公司地块土壤污染修复项目第一阶段的修复工作, 全过程严格按照《修复方案》中的技术及施工要求实施,各项检测结果均满足修复 方案的要求,已达到修复目的,满足申请阶段性修复效果评估的条件。

8.4 阶段性环境监理报告结论

环境监理单位参照相关技术规范对本项目进行审核,结论如下:

- (1) 修复实施中使用的修复技术、修复场地实际总平面布置分区与《修复方案》 基本一致,修复区基坑清挖拐点坐标与《修复方案》、《风险评估报告》基本一致。
- (2)通过对土壤污染区域进行开挖,在验收单位对开挖区域定位复核后进行采样验收,效果评估结果表明,污染区域清挖修复到位,基坑验收结果均低于清挖目标值,达到清挖修复效果。
- (3)根据环境监理单位委托的第三方环境检测机构的检测结果可知,修复单位 在修复实施过程中有效的落实了二次污染防治措施工作,未造成二次污染问题。同 时,修复单位基本落实了施工期间各风险防范措施,施工期间未造成二次污染,未 收到环境影响投诉。

综上所述,修复单位基本按照《修复方案》对地块污染土壤进行了清挖,同时 对地块污染土进行修复,修复实施期间基本落实废水处理设施和各项二次污染防治 措施,未对周围环境造成不良影响,未收到环境污染投诉。该项目已满足阶段性修 复效果评估要求。

8.5 阶段性效果评估结论

2024年9月至2024年11月共采集基坑土壤样品45个、疑似污染土壤(含疑似环境管理土)样品7个。

(1) 基坑清挖效果评估

清挖后基坑共采集土壤混合样品45个(不含现场平行样),清挖后侧壁和坑底污染物砷检测结果范围分别为**4.56~35.0**mg/kg,均达到修复目标值,基坑清挖效果达到预期工程目标。

(2) 疑似污染土壤效果评估

疑似污染土壤(含疑似环境管理土)效果评估污染物砷检测结果范围为12.1~27.1mg/kg,均达到修复目标值要求,疑似污染土可作为清洁土或管境管理土,待第

一阶段项目通过效果评估验收后, 回填于基坑。

(3)污染土壤异地处置效果评估

通过审核修复单位污染土壤清挖记录、转运台账和《施工总结报告》,环境监理单位提供的土壤运输过程和污染土去向的支撑材料、二次污染防治措施落实情况和《监理报告》,土壤处置单位的资质材料、出具的已接收所有转运土壤的证明文件,表明地块污染土壤已全部清挖完毕,并全部外运至清远海螺环保科技有限责任公司和阳春海螺环保科技有限公司进行水泥窑协同处置。

(4) 危险废物处置效果评估结论

通过审核《广州市木材公司地块危险废物土壤清挖完成情况验收报告》,广州市木材公司地块危险废物清挖后遗留的基坑污染土壤不具有危险特性,不属于危险废物,本次危废清挖已到位,无需继续扩大范围进行清挖, 地块内判定的危险废物已全部按"含有或沾染毒性、感染性危险废物的废弃包装物、容器、过滤吸附介质(900-041-49)"完成转运,地块内已无积存的危险废物。

8.6 阶段性修复效果评估综合结论

效果评估综合结论:广州市木材公司地块第一阶段土壤污染修复工作于2024年11月完成,修复效果评估单位通过文件审核、现场勘察、效果评估检测采样和分析等对场地内土壤修复工作进行调查。检测和评估结果表明,第一阶段污染区基坑清挖后土壤检测结果全部达到修复目标值,修复范围内的污染土已清挖完全,污染土壤全部经水泥窑协同处置,疑似污染土壤检测结果全部达到修复目标值,筛上物冲洗已冲洗干净,危废废物已全部清挖转运处置,修复实施过程未对环境造成明显的二次污染,修复效果良好,可满足后续文化设施用地(A2)和部分防护绿地(G2)建设开发要求。

8.7 后期环境监管建议

(1) 在项目场地未通过验收前,土地使用权人和修复单位应做好现场基坑的防

护工作, 待整个修复工程通过验收后, 方可进行场地开发利用;

(2)本地块主要为第二类用地,存在达到第二类用地标准但超过第一类用地标准的具有一定风险的土壤,在未来再开发利用过程中可能对该部分土壤进行开挖外运。由于在地块污染状况调查阶段无法确认未来土壤转移接受地规划用途,对达到第二类用地标准但超过第一类用地标准的土壤,建议这部分土壤不能清运到第一类用地中,应进行妥善处置。